BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 29602312)

  • 21. Building lexicon-based sentiment analysis model for low-resource languages.
    Mohammed I; Prasad R
    MethodsX; 2023 Dec; 11():102460. PubMed ID: 38023300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and testing of a multi-lingual Natural Language Processing-based deep learning system in 10 languages for COVID-19 pandemic crisis: A multi-center study.
    Yang LWY; Ng WY; Lei X; Tan SCY; Wang Z; Yan M; Pargi MK; Zhang X; Lim JS; Gunasekeran DV; Tan FCP; Lee CE; Yeo KK; Tan HK; Ho HSS; Tan BWB; Wong TY; Kwek KYC; Goh RSM; Liu Y; Ting DSW
    Front Public Health; 2023; 11():1063466. PubMed ID: 36860378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A scoping review of publicly available language tasks in clinical natural language processing.
    Gao Y; Dligach D; Christensen L; Tesch S; Laffin R; Xu D; Miller T; Uzuner O; Churpek MM; Afshar M
    J Am Med Inform Assoc; 2022 Sep; 29(10):1797-1806. PubMed ID: 35923088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review.
    Sim JA; Huang X; Horan MR; Stewart CM; Robison LL; Hudson MM; Baker JN; Huang IC
    Artif Intell Med; 2023 Dec; 146():102701. PubMed ID: 38042599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trie-based rule processing for clinical NLP: A use-case study of n-trie, making the ConText algorithm more efficient and scalable.
    Shi J; Hurdle JF
    J Biomed Inform; 2018 Sep; 85():106-113. PubMed ID: 30092358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systematic review of current natural language processing methods and applications in cardiology.
    Reading Turchioe M; Volodarskiy A; Pathak J; Wright DN; Tcheng JE; Slotwiner D
    Heart; 2022 May; 108(12):909-916. PubMed ID: 34711662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural language processing in biomedicine: a unified system architecture overview.
    Doan S; Conway M; Phuong TM; Ohno-Machado L
    Methods Mol Biol; 2014; 1168():275-94. PubMed ID: 24870142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of Natural Language Processing in Total Joint Arthroplasty: Opportunities and Challenges.
    Nugen F; Vera Garcia DV; Sohn S; Mickley JP; Wyles CC; Erickson BJ; Taunton MJ
    J Arthroplasty; 2023 Oct; 38(10):1948-1953. PubMed ID: 37619802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Practical Guide to Natural Language Processing for Radiology.
    Mozayan A; Fabbri AR; Maneevese M; Tocino I; Chheang S
    Radiographics; 2021; 41(5):1446-1453. PubMed ID: 34469212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extracting medication information from French clinical texts.
    Deléger L; Grouin C; Zweigenbaum P
    Stud Health Technol Inform; 2010; 160(Pt 2):949-53. PubMed ID: 20841824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large language models for biomedicine: foundations, opportunities, challenges, and best practices.
    Sahoo SS; Plasek JM; Xu H; Uzuner Ö; Cohen T; Yetisgen M; Liu H; Meystre S; Wang Y
    J Am Med Inform Assoc; 2024 Apr; ():. PubMed ID: 38657567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of Natural Language Processing Tools to Identify and Classify Periprosthetic Femur Fractures.
    Tibbo ME; Wyles CC; Fu S; Sohn S; Lewallen DG; Berry DJ; Maradit Kremers H
    J Arthroplasty; 2019 Oct; 34(10):2216-2219. PubMed ID: 31416741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of minority language skills in English-Irish-speaking bilingual children: A survey of SLT perspectives and current practices.
    Mulgrew L; Duffy O; Kennedy L
    Int J Lang Commun Disord; 2022 Jan; 57(1):63-77. PubMed ID: 34658115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Natural Language Processing in Radiology: Update on Clinical Applications.
    López-Úbeda P; Martín-Noguerol T; Juluru K; Luna A
    J Am Coll Radiol; 2022 Nov; 19(11):1271-1285. PubMed ID: 36029890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural Language Processing and Its Implications for the Future of Medication Safety: A Narrative Review of Recent Advances and Challenges.
    Wong A; Plasek JM; Montecalvo SP; Zhou L
    Pharmacotherapy; 2018 Aug; 38(8):822-841. PubMed ID: 29884988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Natural Language Processing for Breast Imaging: A Systematic Review.
    Diab KM; Deng J; Wu Y; Yesha Y; Collado-Mesa F; Nguyen P
    Diagnostics (Basel); 2023 Apr; 13(8):. PubMed ID: 37189521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Applications of Natural Language Processing for the Management of Stroke Disorders: Scoping Review.
    De Rosario H; Pitarch-Corresa S; Pedrosa I; Vidal-Pedrós M; de Otto-López B; García-Mieres H; Álvarez-Rodríguez L
    JMIR Med Inform; 2023 Sep; 11():e48693. PubMed ID: 37672328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The 2019 n2c2/OHNLP Track on Clinical Semantic Textual Similarity: Overview.
    Wang Y; Fu S; Shen F; Henry S; Uzuner O; Liu H
    JMIR Med Inform; 2020 Nov; 8(11):e23375. PubMed ID: 33245291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing.
    Wulff A; Mast M; Hassler M; Montag S; Marschollek M; Jack T
    Methods Inf Med; 2020 Dec; 59(S 02):e64-e78. PubMed ID: 33058101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated classification of cancer morphology from Italian pathology reports using Natural Language Processing techniques: A rule-based approach.
    Hammami L; Paglialonga A; Pruneri G; Torresani M; Sant M; Bono C; Caiani EG; Baili P
    J Biomed Inform; 2021 Apr; 116():103712. PubMed ID: 33609761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.