These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29602509)

  • 1. Interactions between nitrogen form, loading rate, and light intensity on Microcystis and Planktothrix growth and microcystin production.
    Chaffin JD; Davis TW; Smith DJ; Baer MM; Dick GJ
    Harmful Algae; 2018 Mar; 73():84-97. PubMed ID: 29602509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ammonium recycling supports toxic Planktothrix blooms in Sandusky Bay, Lake Erie: Evidence from stable isotope and metatranscriptome data.
    Hampel JJ; McCarthy MJ; Neudeck M; Bullerjahn GS; McKay RML; Newell SE
    Harmful Algae; 2019 Jan; 81():42-52. PubMed ID: 30638497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the influence of light intensity in mcyA gene expression and microcystin production in toxic strains of Planktothrix agardhii and Microcystis aeruginosa.
    Salvador D; Churro C; Valério E
    J Microbiol Methods; 2016 Apr; 123():4-12. PubMed ID: 26851673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient-Controlled Niche Differentiation of Western Lake Erie Cyanobacterial Populations Revealed via Metatranscriptomic Surveys.
    Harke MJ; Davis TW; Watson SB; Gobler CJ
    Environ Sci Technol; 2016 Jan; 50(2):604-15. PubMed ID: 26654276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms.
    Gobler CJ; Burkholder JM; Davis TW; Harke MJ; Johengen T; Stow CA; Van de Waal DB
    Harmful Algae; 2016 Apr; 54():87-97. PubMed ID: 28073483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of increasing nitrogen and phosphorus concentrations on phytoplankton community growth and toxicity during Planktothrix blooms in Sandusky Bay, Lake Erie.
    Davis TW; Bullerjahn GS; Tuttle T; McKay RM; Watson SB
    Environ Sci Technol; 2015 Jun; 49(12):7197-207. PubMed ID: 25992592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of microcystin-producing cyanobacteria in Finnish lakes with genus-specific microcystin synthetase gene E (mcyE) PCR and associations with environmental factors.
    Rantala A; Rajaniemi-Wacklin P; Lyra C; Lepistö L; Rintala J; Mankiewicz-Boczek J; Sivonen K
    Appl Environ Microbiol; 2006 Sep; 72(9):6101-10. PubMed ID: 16957235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event.
    Kramer BJ; Davis TW; Meyer KA; Rosen BH; Goleski JA; Dick GJ; Oh G; Gobler CJ
    PLoS One; 2018; 13(5):e0196278. PubMed ID: 29791446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of single versus dual nutrient decreases on phytoplankton growth rates, community composition, and Microcystin concentration in the western basin of Lake Erie.
    Baer MM; Godwin CM; Johengen TH
    Harmful Algae; 2023 Mar; 123():102382. PubMed ID: 36894205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competition between microcystin- and non-microcystin-producing Planktothrix agardhii (cyanobacteria) strains under different environmental conditions.
    Briand E; Yéprémian C; Humbert JF; Quiblier C
    Environ Microbiol; 2008 Dec; 10(12):3337-48. PubMed ID: 18759740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen forms influence microcystin concentration and composition via changes in cyanobacterial community structure.
    Monchamp ME; Pick FR; Beisner BE; Maranger R
    PLoS One; 2014; 9(1):e85573. PubMed ID: 24427318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenies of microcystin-producing cyanobacteria in the lower Laurentian Great Lakes suggest extensive genetic connectivity.
    Davis TW; Watson SB; Rozmarynowycz MJ; Ciborowski JJ; McKay RM; Bullerjahn GS
    PLoS One; 2014; 9(9):e106093. PubMed ID: 25207941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting microcystin production and cyanobacterial population dynamics in two Planktothrix-dominated freshwater lakes.
    Janse I; Kardinaal WE; Agterveld MK; Meima M; Visser PM; Zwart G
    Environ Microbiol; 2005 Oct; 7(10):1514-24. PubMed ID: 16156725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stringent Response of Cyanobacteria and Other Bacterioplankton during Different Stages of a Harmful Cyanobacterial Bloom.
    Li H; Bhattarai B; Barber M; Goel R
    Environ Sci Technol; 2023 Oct; 57(42):16016-16032. PubMed ID: 37819800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of nutrient temporal variations on toxic genotype and microcystin concentration in two eutrophic lakes.
    Wang M; Shi W; Chen Q; Zhang J; Yi Q; Hu L
    Ecotoxicol Environ Saf; 2018 Dec; 166():192-199. PubMed ID: 30269014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field studies on the environmental factors in controlling microcystin production in the subtropical shallow lakes of the Yangtze River.
    Wu S; Wang S; Yang H; Xie P; Ni L; Xu J
    Bull Environ Contam Toxicol; 2008 Apr; 80(4):329-34. PubMed ID: 18317661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of nitrogen forms on the production of cyanobacterial toxin microcystin-IR by an isolated Microcystis aeruginosa.
    Yan H; Pan G; Zou H; Song L; Zhang M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(11-12):2993-3003. PubMed ID: 15533019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of illumination intensity in microcystin development using Microcystis aeruginosa as the model algae.
    Liu H; Song X; Guan Y; Pan D; Li Y; Xu S; Fang Y
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23261-23272. PubMed ID: 28831771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial community successions and their dynamic functions during harmful cyanobacterial blooms in a freshwater lake.
    Li H; Barber M; Lu J; Goel R
    Water Res; 2020 Oct; 185():116292. PubMed ID: 33086464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of qPCR and RT-qPCR for monitoring variations of microcystin producers and as an early warning system to predict toxin production in an Ohio inland lake.
    Lu J; Struewing I; Wymer L; Tettenhorst DR; Shoemaker J; Allen J
    Water Res; 2020 Mar; 170():115262. PubMed ID: 31785564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.