These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
407 related articles for article (PubMed ID: 29602786)
21. Comprehensive Laboratory Evaluation of a Highly Specific Lateral Flow Assay for the Presumptive Identification of Bacillus anthracis Spores in Suspicious White Powders and Environmental Samples. Ramage JG; Prentice KW; DePalma L; Venkateswaran KS; Chivukula S; Chapman C; Bell M; Datta S; Singh A; Hoffmaster A; Sarwar J; Parameswaran N; Joshi M; Thirunavkkarasu N; Krishnan V; Morse S; Avila JR; Sharma S; Estacio PL; Stanker L; Hodge DR; Pillai SP Health Secur; 2016; 14(5):351-65. PubMed ID: 27661796 [TBL] [Abstract][Full Text] [Related]
22. Rapid, high-throughput, culture-based PCR methods to analyze samples for viable spores of Bacillus anthracis and its surrogates. Kane SR; Létant SE; Murphy GA; Alfaro TM; Krauter PW; Mahnke R; Legler TC; Raber E J Microbiol Methods; 2009 Mar; 76(3):278-84. PubMed ID: 19141303 [TBL] [Abstract][Full Text] [Related]
23. Rapid and effective detection of anthrax spores in soil by PCR. Cheun HI; Makino SI; Watarai M; Erdenebaatar J; Kawamoto K; Uchida I J Appl Microbiol; 2003; 95(4):728-33. PubMed ID: 12969286 [TBL] [Abstract][Full Text] [Related]
24. Evaluation of the Cepheid GeneXpert system for detecting Bacillus anthracis. Ulrich MP; Christensen DR; Coyne SR; Craw PD; Henchal EA; Sakai SH; Swenson D; Tholath J; Tsai J; Weir AF; Norwood DA J Appl Microbiol; 2006 May; 100(5):1011-6. PubMed ID: 16630001 [TBL] [Abstract][Full Text] [Related]
25. Use of molecular beacons and multi-allelic real-time PCR for detection of and discrimination between virulent Bacillus anthracis and other Bacillus isolates. Hadjinicolaou AV; Demetriou VL; Hezka J; Beyer W; Hadfield TL; Kostrikis LG J Microbiol Methods; 2009 Jul; 78(1):45-53. PubMed ID: 19379778 [TBL] [Abstract][Full Text] [Related]
26. Simple and rapid method for detection of bacterial spores in powder useful for first responders. Min J; Lee J; Deininger RA J Environ Health; 2006 Apr; 68(8):34-7, 44, 46. PubMed ID: 16637561 [TBL] [Abstract][Full Text] [Related]
27. Rapid detection and identification of Bacillus anthracis in food using pyrosequencing technology. Amoako KK; Janzen TW; Shields MJ; Hahn KR; Thomas MC; Goji N Int J Food Microbiol; 2013 Aug; 165(3):319-25. PubMed ID: 23810955 [TBL] [Abstract][Full Text] [Related]
28. Development of a recombinase polymerase amplification assay for rapid detection of Francisella noatunensis subsp. orientalis. Shahin K; Gustavo Ramirez-Paredes J; Harold G; Lopez-Jimena B; Adams A; Weidmann M PLoS One; 2018; 13(2):e0192979. PubMed ID: 29444148 [TBL] [Abstract][Full Text] [Related]
29. Rapid-viability PCR method for detection of live, virulent Bacillus anthracis in environmental samples. Létant SE; Murphy GA; Alfaro TM; Avila JR; Kane SR; Raber E; Bunt TM; Shah SR Appl Environ Microbiol; 2011 Sep; 77(18):6570-8. PubMed ID: 21764960 [TBL] [Abstract][Full Text] [Related]
30. A simple and sensitive detection system for Bacillus anthracis in meat and tissue. Cheun HI; Makino SI; Watarai M; Shirahata T; Uchida I; Takeshi K J Appl Microbiol; 2001 Sep; 91(3):421-6. PubMed ID: 11556906 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of five commercial nucleic acid extraction kits for their ability to inactivate Bacillus anthracis spores and comparison of DNA yields from spores and spiked environmental samples. Dauphin LA; Moser BD; Bowen MD J Microbiol Methods; 2009 Jan; 76(1):30-7. PubMed ID: 18824041 [TBL] [Abstract][Full Text] [Related]
33. Specific Bacillus anthracis identification by a plcR-targeted restriction site insertion-PCR (RSI-PCR) assay. Gierczyński R; Zasada AA; Raddadi N; Merabishvili M; Daffonchio D; Rastawicki W; Jagielski M FEMS Microbiol Lett; 2007 Jul; 272(1):55-9. PubMed ID: 17490431 [TBL] [Abstract][Full Text] [Related]
34. Detection of low numbers of Bacillus anthracis spores in three soils using five commercial DNA extraction methods with and without an enrichment step. Gulledge JS; Luna VA; Luna AJ; Zartman R; Cannons AC J Appl Microbiol; 2010 Nov; 109(5):1509-20. PubMed ID: 20553343 [TBL] [Abstract][Full Text] [Related]
35. A simple method for the rapid removal of Bacillus anthracis spores from DNA preparations. Dauphin LA; Bowen MD J Microbiol Methods; 2009 Feb; 76(2):212-4. PubMed ID: 18996156 [TBL] [Abstract][Full Text] [Related]
36. Bacillus species at the Canberra Airport: A comparison of real-time polymerase chain reaction and massively parallel sequencing for identification. Gahan ME; Bowman S; Chevalier R; Rossi R; Nelson M; Roffey P; Xu B; Power D; McNevin D Forensic Sci Int; 2019 Feb; 295():169-178. PubMed ID: 30612042 [TBL] [Abstract][Full Text] [Related]
37. Background frequency of Bacillus species at the Canberra Airport: A 12 month study. Gahan ME; Thomas R; Rossi R; Nelson M; Roffey P; Richardson MM; McNevin D Forensic Sci Int; 2015 Dec; 257():142-148. PubMed ID: 26298416 [TBL] [Abstract][Full Text] [Related]
38. Identification and validation of specific markers of Bacillus anthracis spores by proteomics and genomics approaches. Chenau J; Fenaille F; Caro V; Haustant M; Diancourt L; Klee SR; Junot C; Ezan E; Goossens PL; Becher F Mol Cell Proteomics; 2014 Mar; 13(3):716-32. PubMed ID: 24379445 [TBL] [Abstract][Full Text] [Related]
39. [Application of the multiplex PCR and PCR-RFLP method in the identification of the Bacillus anthracis]. Szymajda U; Bartoszcze M Med Dosw Mikrobiol; 2005; 57(3):277-85. PubMed ID: 16494204 [TBL] [Abstract][Full Text] [Related]
40. Recombinase Polymerase Amplification Assay-A Simple, Fast and Cost-Effective Alternative to Real Time PCR for Specific Detection of Feline Herpesvirus-1. Wang J; Liu L; Wang J; Sun X; Yuan W PLoS One; 2017; 12(1):e0166903. PubMed ID: 28045956 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]