BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29602904)

  • 21. Enzyme-substrate interactions revealed by the crystal structures of the archaeal Sulfolobus PTP-fold phosphatase and its phosphopeptide complexes.
    Chu HM; Wang AH
    Proteins; 2007 Mar; 66(4):996-1003. PubMed ID: 17173287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic analysis of human serine/threonine protein phosphatase 2Calpha.
    Fjeld CC; Denu JM
    J Biol Chem; 1999 Jul; 274(29):20336-43. PubMed ID: 10400656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. X-ray structure reveals a new class and provides insight into evolution of alkaline phosphatases.
    Bihani SC; Das A; Nilgiriwala KS; Prashar V; Pirocchi M; Apte SK; Ferrer JL; Hosur MV
    PLoS One; 2011; 6(7):e22767. PubMed ID: 21829507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate-dependent metal preference of PPM1H, a cancer-associated protein phosphatase 2C: comparison with other family members.
    Sugiura T; Noguchi Y
    Biometals; 2009 Jun; 22(3):469-77. PubMed ID: 19262998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The first crystal structure of a family 129 glycoside hydrolase from a probiotic bacterium reveals critical residues and metal cofactors.
    Sato M; Liebschner D; Yamada Y; Matsugaki N; Arakawa T; Wills SS; Hattie M; Stubbs KA; Ito T; Senda T; Ashida H; Fushinobu S
    J Biol Chem; 2017 Jul; 292(29):12126-12138. PubMed ID: 28546425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring the role of active site Mn
    Wang L; Yan F
    Biochem Biophys Res Commun; 2019 Apr; 511(3):612-618. PubMed ID: 30826056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substrate specificity of the human protein phosphatase 2Cdelta, Wip1.
    Yamaguchi H; Minopoli G; Demidov ON; Chatterjee DK; Anderson CW; Durell SR; Appella E
    Biochemistry; 2005 Apr; 44(14):5285-94. PubMed ID: 15807522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comprehensive overview of PPM1A: From structure to disease.
    Li M; Xu X; Su Y; Shao X; Zhou Y; Yan J
    Exp Biol Med (Maywood); 2022 Mar; 247(6):453-461. PubMed ID: 34861123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. X-ray crystal structure of the hypothetical phosphotyrosine phosphatase MDP-1 of the haloacid dehalogenase superfamily.
    Peisach E; Selengut JD; Dunaway-Mariano D; Allen KN
    Biochemistry; 2004 Oct; 43(40):12770-9. PubMed ID: 15461449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TAK1-binding protein 1 is a pseudophosphatase.
    Conner SH; Kular G; Peggie M; Shepherd S; Schüttelkopf AW; Cohen P; Van Aalten DM
    Biochem J; 2006 Nov; 399(3):427-34. PubMed ID: 16879102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate.
    Egloff MP; Cohen PT; Reinemer P; Barford D
    J Mol Biol; 1995 Dec; 254(5):942-59. PubMed ID: 7500362
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and biochemical characterization of a new Mg(2+) binding site near Tyr94 in the restriction endonuclease PvuII.
    Spyridaki A; Matzen C; Lanio T; Jeltsch A; Simoncsits A; Athanasiadis A; Scheuring-Vanamee E; Kokkinidis M; Pingoud A
    J Mol Biol; 2003 Aug; 331(2):395-406. PubMed ID: 12888347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of Streptococcus agalactiae serine/threonine phosphatase. The subdomain conformation is coupled to the binding of a third metal ion.
    Rantanen MK; Lehtiö L; Rajagopal L; Rubens CE; Goldman A
    FEBS J; 2007 Jun; 274(12):3128-37. PubMed ID: 17521332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1.
    Goldberg J; Huang HB; Kwon YG; Greengard P; Nairn AC; Kuriyan J
    Nature; 1995 Aug; 376(6543):745-53. PubMed ID: 7651533
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure and mutagenesis of a protein phosphatase-1:calcineurin hybrid elucidate the role of the beta12-beta13 loop in inhibitor binding.
    Maynes JT; Perreault KR; Cherney MM; Luu HA; James MN; Holmes CF
    J Biol Chem; 2004 Oct; 279(41):43198-206. PubMed ID: 15280359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal structures of creatininase reveal the substrate binding site and provide an insight into the catalytic mechanism.
    Yoshimoto T; Tanaka N; Kanada N; Inoue T; Nakajima Y; Haratake M; Nakamura KT; Xu Y; Ito K
    J Mol Biol; 2004 Mar; 337(2):399-416. PubMed ID: 15003455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases.
    Murphy JE; Tibbitts TT; Kantrowitz ER
    J Mol Biol; 1995 Nov; 253(4):604-17. PubMed ID: 7473737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions between a minimal protein serine/threonine phosphatase and its phosphopeptide substrate sequence.
    Ansai T; Dupuy LC; Barik S
    J Biol Chem; 1996 Oct; 271(40):24401-7. PubMed ID: 8798696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase.
    Poyner RR; Larsen TM; Wong SW; Reed GH
    Arch Biochem Biophys; 2002 May; 401(2):155-63. PubMed ID: 12054465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cadmium is a potent inhibitor of PPM phosphatases and targets the M1 binding site.
    Pan C; Liu HD; Gong Z; Yu X; Hou XB; Xie DD; Zhu XB; Li HW; Tang JY; Xu YF; Yu JQ; Zhang LY; Fang H; Xiao KH; Chen YG; Wang JY; Pang Q; Chen W; Sun JP
    Sci Rep; 2013; 3():2333. PubMed ID: 23903585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.