BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29603024)

  • 1. Effect of cultivation mode on the production of docosahexaenoic acid by Tisochrysis lutea.
    Hu H; Ma LL; Shen XF; Li JY; Wang HF; Zeng RJ
    AMB Express; 2018 Mar; 8(1):50. PubMed ID: 29603024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of inorganic carbon limitation on the conversion of organic carbon to total fatty acids by Monodus subterraneus.
    Hu H; Li JY; Zhai SW; Wu DD; Zhu SG; Zeng RJ
    Sci Total Environ; 2020 Oct; 737():140275. PubMed ID: 32783858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different DHA or EPA production responses to nutrient stress in the marine microalga Tisochrysis lutea and the freshwater microalga Monodus subterraneus.
    Hu H; Li JY; Pan XR; Zhang F; Ma LL; Wang HJ; Zeng RJ
    Sci Total Environ; 2019 Mar; 656():140-149. PubMed ID: 30504016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous photoautotrophic production of DHA and EPA by Tisochrysis lutea and Microchloropsis salina in co-culture.
    Thurn AL; Stock A; Gerwald S; Weuster-Botz D
    Bioresour Bioprocess; 2022 Dec; 9(1):130. PubMed ID: 38647795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fucoxanthin and docosahexaenoic acid production by cold-adapted Tisochrysis lutea.
    Gao F; Cabanelas ITD; Wijffels RH; Barbosa MJ
    N Biotechnol; 2022 Jan; 66():16-24. PubMed ID: 34500104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of Chemical Composition of
    Almutairi AW
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33050388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions.
    Sahin D; Tas E; Altindag UH
    AMB Express; 2018 Jan; 8(1):7. PubMed ID: 29368055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of Aurantiochytrium species: high docosahexaenoic acid (DHA) production by the newly isolated microalga, Aurantiochytrium sp. SD116.
    Gao M; Song X; Feng Y; Li W; Cui Q
    J Oleo Sci; 2013; 62(3):143-51. PubMed ID: 23470441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of Sodium-Acetate-Induced DHA Accumulation in a DHA-Producing Microalga,
    Li Y; Tian W; Fu Z; Ye W; Zhang X; Zhang Z; Sun D
    Mar Drugs; 2022 Aug; 20(8):. PubMed ID: 36005511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an alternative medium via completely replaces the medium components by mixed wastewater and crude glycerol for efficient production of docosahexaenoic acid by Schizochytrium sp.
    Wang SK; Tian YT; Dai YR; Wang D; Liu KC; Cui YH
    Chemosphere; 2022 Mar; 291(Pt 1):132868. PubMed ID: 34767848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved docosahexaenoic acid production in Aurantiochytrium by glucose limited pH-auxostat fed-batch cultivation.
    Janthanomsuk P; Verduyn C; Chauvatcharin S
    Bioresour Technol; 2015 Nov; 196():592-9. PubMed ID: 26298403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The carbon partitioning of glucose and DIC in mixotrophic, heterotrophic and photoautotrophic cultures of Tetraselmis suecica.
    Penhaul Smith JK; Hughes AD; McEvoy L; Thornton B; Day JG
    Biotechnol Lett; 2021 Mar; 43(3):729-743. PubMed ID: 33459952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light enhanced the accumulation of total fatty acids (TFA) and docosahexaenoic acid (DHA) in a newly isolated heterotrophic microalga Crypthecodinium sp. SUN.
    Sun D; Zhang Z; Mao X; Wu T; Jiang Y; Liu J; Chen F
    Bioresour Technol; 2017 Mar; 228():227-234. PubMed ID: 28064135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined effect of salinity and pH on lipid content and fatty acid composition of
    Almutairi AW; El-Sayed AEB; Reda MM
    Saudi J Biol Sci; 2020 Dec; 27(12):3553-3558. PubMed ID: 33304166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STUDY ON BIOLOGICAL CHARACTERISTICS OF HETEROTROPHIC MARINE MICROALGA-SCHIZOCHYTRIUM MANGROVEI PQ6 ISOLATED FROM PHU QUOC ISLAND, KIEN GIANG PROVINCE, VIETNAM(1).
    Hong DD; Anh HT; Thu NT
    J Phycol; 2011 Aug; 47(4):944-54. PubMed ID: 27020029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources.
    Li J; Liu R; Chang G; Li X; Chang M; Liu Y; Jin Q; Wang X
    Bioresour Technol; 2015 Feb; 177():51-7. PubMed ID: 25479393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological and Ecological Aspects of Chlorella sorokiniana (Trebouxiophyceae) Under Photoautotrophic and Mixotrophic Conditions.
    Marchello AE; Dos Santos AC; Lombardi AT; de Souza CWO; Montanhim GC
    Microb Ecol; 2018 Oct; 76(3):791-800. PubMed ID: 29520451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced biomass production and pollutant removal by duckweed in mixotrophic conditions.
    Sun Z; Guo W; Yang J; Zhao X; Chen Y; Yao L; Hou H
    Bioresour Technol; 2020 Dec; 317():124029. PubMed ID: 32916457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source.
    Ratledge C; Kanagachandran K; Anderson AJ; Grantham DJ; Stephenson JC
    Lipids; 2001 Nov; 36(11):1241-6. PubMed ID: 11795857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization.
    Abad S; Turon X
    Mar Drugs; 2015 Dec; 13(12):7275-84. PubMed ID: 26690180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.