BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 29603085)

  • 1. Risk assessment of bioaccessible arsenic and cadmium exposure through rice consumption in local residents of the Mae Tao Sub-district, Northwestern Thailand.
    Chanpiwat P; Hensawang S; Suwatvitayakorn P; Ponsin M
    Environ Geochem Health; 2019 Feb; 41(1):343-356. PubMed ID: 29603085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human health risk assessment of cadmium exposure through rice consumption in cadmium-contaminated areas of the Mae Tao sub-district, Tak, Thailand.
    Suwatvitayakorn P; Ko MS; Kim KW; Chanpiwat P
    Environ Geochem Health; 2020 Aug; 42(8):2331-2344. PubMed ID: 31502116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Health impact assessment of arsenic and cadmium intake via rice consumption in Bangkok, Thailand.
    Hensawang S; Chanpiwat P
    Environ Monit Assess; 2017 Oct; 189(11):599. PubMed ID: 29090399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium transfer from contaminated soils to the human body through rice consumption in southern Jiangsu Province, China.
    Li T; Chang Q; Yuan X; Li J; Ayoko GA; Frost RL; Chen H; Zhang X; Song Y; Song W
    Environ Sci Process Impacts; 2017 Jun; 19(6):843-850. PubMed ID: 28516984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis and probabilistic risk assessment of bioaccessible arsenic in polished and husked jasmine rice sold in Bangkok.
    Hensawang S; Chanpiwat P
    Chemosphere; 2018 Sep; 207():637-648. PubMed ID: 29852463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic health risk assessment related to rice consumption behaviors in adults living in Northern Thailand.
    Chanpiwat P; Kim KW
    Environ Monit Assess; 2019 Oct; 191(11):674. PubMed ID: 31654271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metals (lead, cadmium, methylmercury, arsenic) in commonly imported rice grains (Oryza sativa) sold in Saudi Arabia and their potential health risk.
    Al-Saleh I; Abduljabbar M
    Int J Hyg Environ Health; 2017 Oct; 220(7):1168-1178. PubMed ID: 28780210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of washing, soaking and domestic cooking on cadmium, arsenic and lead bioaccessibilities in rice.
    Liu K; Zheng J; Chen F
    J Sci Food Agric; 2018 Aug; 98(10):3829-3835. PubMed ID: 29363749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice.
    Chen H; Tang Z; Wang P; Zhao FJ
    Environ Pollut; 2018 Jul; 238():482-490. PubMed ID: 29602104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaccessibility analysis of toxic metals in consumed rice through an in vitro human digestion model - Comparison of calculated human health risk from raw, cooked and digested rice.
    Sharafi K; Nodehi RN; Mahvi AH; Pirsaheb M; Nazmara S; Mahmoudi B; Yunesian M
    Food Chem; 2019 Nov; 299():125126. PubMed ID: 31284243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probabilistic estimation and statuses of total, bioaccessible and inorganic arsenic accumulation in commercial white and brown rice in Thailand.
    Hensawang S; Chanpiwat P
    Food Addit Contam Part B Surveill; 2022 Sep; 15(3):191-202. PubMed ID: 35574980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposure assessment of the population in Poland to the toxic effects of arsenic compounds present in rice and rice based products.
    Mania M; Rebeniak M; Szynal T; Starska K; Wojciechowska-Mazurek M; Postupolski J
    Rocz Panstw Zakl Hig; 2017; 68(4):339-346. PubMed ID: 29264911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic in rice and rice products in Northwestern Mexico and health risk assessment.
    García-Rico L; Valenzuela-Rodríguez MP; Meza-Montenegro MM; Lopez-Duarte AL
    Food Addit Contam Part B Surveill; 2020 Mar; 13(1):25-33. PubMed ID: 31690242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of influences of cooking on cadmium and arsenic bioaccessibility in rice, using an in vitro physiologically-based extraction test.
    Zhuang P; Zhang C; Li Y; Zou B; Mo H; Wu K; Wu J; Li Z
    Food Chem; 2016 Dec; 213():206-214. PubMed ID: 27451173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geochemical associations and availability of cadmium (Cd) in a paddy field system, northwestern Thailand.
    Kosolsaksakul P; Farmer JG; Oliver IW; Graham MC
    Environ Pollut; 2014 Apr; 187():153-61. PubMed ID: 24502996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metals and probabilistic risk assessment via rice consumption in Thailand.
    Kukusamude C; Sricharoen P; Limchoowong N; Kongsri S
    Food Chem; 2021 Jan; 334():127402. PubMed ID: 32711260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of in vitro digestion methods for determining bioaccessibility of Hg in rice of China.
    Wu Z; Feng X; Li P; Lin CJ; Qiu G; Wang X; Zhao H; Dong H
    J Environ Sci (China); 2018 Jun; 68():185-193. PubMed ID: 29908738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China.
    Chen H; Yang X; Wang P; Wang Z; Li M; Zhao FJ
    Sci Total Environ; 2018 Oct; 639():271-277. PubMed ID: 29791880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Analysis and Health Risk Assessment of Cadmium and Arsenic in Japanese, Vietnamese, and Indonesian Rice].
    Takamoto A; Ishibashi H; Fukushima S; Tomoyori H; Arizono K
    Shokuhin Eiseigaku Zasshi; 2020; 61(5):192-199. PubMed ID: 33132364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total and inorganic arsenic in rice and rice bran purchased in Thailand.
    Ruangwises S; Saipan P; Tengjaroenkul B; Ruangwises N
    J Food Prot; 2012 Apr; 75(4):771-4. PubMed ID: 22488070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.