These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 29603421)

  • 61. Hybrid 3D Nanostructure-Based Hole Transport Layer for Highly Efficient Inverted Perovskite Solar Cells.
    Ouyang D; Chen C; Huang Z; Zhu L; Yan Y; Choy WCH
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16611-16619. PubMed ID: 33784076
    [TBL] [Abstract][Full Text] [Related]  

  • 62. High Photovoltage Inverted Planar Heterojunction Perovskite Solar Cells with All-Inorganic Selective Contact Layers.
    Liu X; Jiang J; Wang F; Xiao Y; Sharp ID; Li Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46894-46901. PubMed ID: 31773949
    [TBL] [Abstract][Full Text] [Related]  

  • 63. PEAI-Based Interfacial Layer for High-Efficiency and Stable Solar Cells Based on a MACl-Mediated Grown FA
    Zhu T; Zheng D; Liu J; Coolen L; Pauporté T
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37197-37207. PubMed ID: 32814384
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reducing Energy Disorder of Hole Transport Layer by Charge Transfer Complex for High Performance p-i-n Perovskite Solar Cells.
    Xu G; Xue R; Stuard SJ; Ade H; Zhang C; Yao J; Li Y; Li Y
    Adv Mater; 2021 Apr; 33(13):e2006753. PubMed ID: 33634532
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Highly efficient inverted perovskite solar cells incorporating P3CT-Rb as a hole transport layer to achieve a large open circuit voltage of 1.144 V.
    Li S; He B; Xu J; Lu H; Jiang J; Zhu J; Kan Z; Zhu L; Wu F
    Nanoscale; 2020 Feb; 12(6):3686-3691. PubMed ID: 32016197
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Defect Passivation by Amide-Based Hole-Transporting Interfacial Layer Enhanced Perovskite Grain Growth for Efficient p-i-n Perovskite Solar Cells.
    Wang SY; Chen CP; Chung CL; Hsu CW; Hsu HL; Wu TH; Zhuang JY; Chang CJ; Chen HM; Chang YJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40050-40061. PubMed ID: 31596062
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Low-Temperature, Solution-Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells.
    Jung JW; Chueh CC; Jen AK
    Adv Mater; 2015 Dec; 27(47):7874-80. PubMed ID: 26484846
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells.
    Seo S; Park IJ; Kim M; Lee S; Bae C; Jung HS; Park NG; Kim JY; Shin H
    Nanoscale; 2016 Jun; 8(22):11403-12. PubMed ID: 27216291
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Efficient and Stable Vacuum-Free-Processed Perovskite Solar Cells Enabled by a Robust Solution-Processed Hole Transport Layer.
    Chang CY; Tsai BC; Hsiao YC
    ChemSusChem; 2017 May; 10(9):1981-1988. PubMed ID: 28334500
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hysteresis-Free Planar Perovskite Solar Cells with a Breakthrough Efficiency of 22% and Superior Operational Stability over 2000 h.
    Akin S
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39998-40005. PubMed ID: 31596065
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Highly Efficient Perovskite Solar Cells with Gradient Bilayer Electron Transport Materials.
    Gong X; Sun Q; Liu S; Liao P; Shen Y; Grätzel C; Zakeeruddin SM; Grätzel M; Wang M
    Nano Lett; 2018 Jun; 18(6):3969-3977. PubMed ID: 29782799
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Understanding of carrier dynamics, heterojunction merits and device physics: towards designing efficient carrier transport layer-free perovskite solar cells.
    Liao JF; Wu WQ; Jiang Y; Zhong JX; Wang L; Kuang DB
    Chem Soc Rev; 2020 Jan; 49(2):354-381. PubMed ID: 31859320
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ion-Migration Inhibition by the Cation-π Interaction in Perovskite Materials for Efficient and Stable Perovskite Solar Cells.
    Wei D; Ma F; Wang R; Dou S; Cui P; Huang H; Ji J; Jia E; Jia X; Sajid S; Elseman AM; Chu L; Li Y; Jiang B; Qiao J; Yuan Y; Li M
    Adv Mater; 2018 Aug; 30(31):e1707583. PubMed ID: 29938843
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In Situ Back-Contact Passivation Improves Photovoltage and Fill Factor in Perovskite Solar Cells.
    Tan F; Tan H; Saidaminov MI; Wei M; Liu M; Mei A; Li P; Zhang B; Tan CS; Gong X; Zhao Y; Kirmani AR; Huang Z; Fan JZ; Quintero-Bermudez R; Kim J; Zhao Y; Voznyy O; Gao Y; Zhang F; Richter LJ; Lu ZH; Zhang W; Sargent EH
    Adv Mater; 2019 Apr; 31(14):e1807435. PubMed ID: 30740780
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Homogenized NiO
    Yu S; Xiong Z; Zhou H; Zhang Q; Wang Z; Ma F; Qu Z; Zhao Y; Chu X; Zhang X; You J
    Science; 2023 Dec; 382(6677):1399-1404. PubMed ID: 37995210
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Solution-Processed Lithium-Doped ZnO Electron Transport Layer for Efficient Triple Cation (Rb, MA, FA) Perovskite Solar Cells.
    Mahmud MA; Elumalai NK; Upama MB; Wang D; Soufiani AM; Wright M; Xu C; Haque F; Uddin A
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33841-33854. PubMed ID: 28910073
    [TBL] [Abstract][Full Text] [Related]  

  • 77. NiN-Passivated NiO Hole-Transport Layer Improves Halide Perovskite-Based Solar Cell.
    Itzhak A; He X; Kama A; Kumar S; Ejgenberg M; Kahn A; Cahen D
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47587-47594. PubMed ID: 36226899
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Improved Carrier Transport in Perovskite Solar Cells Probed by Femtosecond Transient Absorption Spectroscopy.
    Serpetzoglou E; Konidakis I; Kakavelakis G; Maksudov T; Kymakis E; Stratakis E
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43910-43919. PubMed ID: 29188719
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Excellent Moisture Stability and Efficiency of Inverted All-Inorganic CsPbIBr
    Yang S; Wang L; Gao L; Cao J; Han Q; Yu F; Kamata Y; Zhang C; Fan M; Wei G; Ma T
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13931-13940. PubMed ID: 32119775
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Differentiated Functions of Potassium Interface Passivation and Doping on Charge-Carrier Dynamics in Perovskite Solar Cells.
    Shen W; Wu Z; Yang G; Kong Y; Li W; Liang G; Huang F; Cheng YB; Zhong J
    J Phys Chem Lett; 2022 Apr; 13(14):3188-3196. PubMed ID: 35377654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.