These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 29603649)
1. Ex and in vivo characterization of the wavelength-dependent 3-photon action cross-sections of red fluorescent proteins covering the 1700-nm window. Liu H; Wang J; Peng X; Zhuang Z; Qiu P; Wang K J Biophotonics; 2018 Jul; 11(7):e201700351. PubMed ID: 29603649 [TBL] [Abstract][Full Text] [Related]
2. Tong S; Zhong J; Chen X; Deng X; Huang J; Zhang Y; Qin M; Li Z; Cheng H; Zhang W; Zheng L; Xie W; Qiu P; Wang K ACS Nano; 2023 Feb; 17(4):3686-3695. PubMed ID: 36799427 [TBL] [Abstract][Full Text] [Related]
3. Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section. Tsai TH; Lin CY; Tsai HJ; Chen SY; Tai SP; Lin KH; Sun CK Opt Lett; 2006 Apr; 31(7):930-2. PubMed ID: 16599215 [TBL] [Abstract][Full Text] [Related]
4. Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging. Yamanaka M; Saito K; Smith NI; Arai Y; Uegaki K; Yonemaru Y; Mochizuki K; Kawata S; Nagai T; Fujita K J Biomed Opt; 2015 Oct; 20(10):101202. PubMed ID: 26238663 [TBL] [Abstract][Full Text] [Related]
5. Measurements of multiphoton action cross sections for multiphoton microscopy. Cheng LC; Horton NG; Wang K; Chen SJ; Xu C Biomed Opt Express; 2014 Oct; 5(10):3427-33. PubMed ID: 25360361 [TBL] [Abstract][Full Text] [Related]
6. Measurement of 3-photon excitation and emission spectra and verification of Kasha's rule for selected fluorescent proteins excited at the 1700-nm window. Deng X; Zhuang Z; Liu H; Qiu P; Wang K Opt Express; 2019 Apr; 27(9):12723-12731. PubMed ID: 31052809 [TBL] [Abstract][Full Text] [Related]
7. Excellent Multiphoton Excitation Fluorescence with Large Multiphoton Absorption Cross Sections of Arginine-Modified Gold Nanoclusters for Bioimaging. Wei Z; Pan Y; Hou G; Ran X; Chi Z; He Y; Kuang Y; Wang X; Liu R; Guo L ACS Appl Mater Interfaces; 2022 Jan; 14(2):2452-2463. PubMed ID: 34986306 [TBL] [Abstract][Full Text] [Related]
8. Visualizing astrocytes in the deep mouse brain in vivo. Liu H; Wang J; Zhuang Z; He J; Wen W; Qiu P; Wang K J Biophotonics; 2019 Jul; 12(7):e201800420. PubMed ID: 30938095 [TBL] [Abstract][Full Text] [Related]
9. Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain. Hontani Y; Xia F; Xu C Sci Adv; 2021 Mar; 7(12):. PubMed ID: 33731355 [TBL] [Abstract][Full Text] [Related]
10. Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy. Salomonnson E; Mihalko LA; Verkhusha VV; Luker KE; Luker GD J Biomed Opt; 2012 Sep; 17(9):96001. PubMed ID: 22975677 [TBL] [Abstract][Full Text] [Related]
11. Two- and three-photon absorption cross-section characterization for high-brightness, cell-specific multiphoton fluorescence brain imaging. Lanin AA; Chebotarev AS; Pochechuev MS; Kelmanson IV; Kotova DA; Bilan DS; Ermakova YG; Fedotov AB; Ivanov AA; Belousov VV; Zheltikov AM J Biophotonics; 2020 Mar; 13(3):e201900243. PubMed ID: 31568649 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous Two- and Three-Photon Deep Imaging of Autofluorescence in Bacterial Communities. Fernández A; Classen A; Josyula N; Florence JT; Sokolov AV; Scully MO; Straight P; Verhoef AJ Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276359 [TBL] [Abstract][Full Text] [Related]
13. In Vivo Deep-Brain Structural and Hemodynamic Multiphoton Microscopy Enabled by Quantum Dots. Liu H; Deng X; Tong S; He C; Cheng H; Zhuang Z; Gan M; Li J; Xie W; Qiu P; Wang K Nano Lett; 2019 Aug; 19(8):5260-5265. PubMed ID: 31268725 [TBL] [Abstract][Full Text] [Related]
14. In vivo deep-brain 2-photon fluorescent microscopy labeled with near-infrared dyes excited at the 1700 nm window. Deng X; Ma X; Zhang W; Qin M; Xie W; Qiu P; Yin J; Wang K Anal Chim Acta; 2023 May; 1255():341118. PubMed ID: 37032053 [TBL] [Abstract][Full Text] [Related]
15. Fluorene-based fluorescent probes with high two-photon action cross-sections for biological multiphoton imaging applications. Schafer-Hales KJ; Belfield KD; Yao S; Frederiksen PK; Hales JM; Kolattukudy PE J Biomed Opt; 2005; 10(5):051402. PubMed ID: 16292939 [TBL] [Abstract][Full Text] [Related]
17. Temporal-Focusing Multiphoton Excitation Single-Molecule Localization Microscopy Using Spontaneously Blinking Fluorophores. Lai JZ; Lin CY; Chen SJ; Cheng YM; Abe M; Lin TC; Chien FC Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202404942. PubMed ID: 38641901 [TBL] [Abstract][Full Text] [Related]
18. Comparison of higher-order multiphoton signal generation and collection at the 1700-nm window based on transmittance measurement of objective lenses. Wen W; Wang Y; Liu H; Wang K; Qiu P; Wang K J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28766923 [TBL] [Abstract][Full Text] [Related]
19. Multiphoton microscopy in life sciences. König K J Microsc; 2000 Nov; 200(Pt 2):83-104. PubMed ID: 11106949 [TBL] [Abstract][Full Text] [Related]
20. Two-photon excitation induced fluorescence of a trifluorophore-labeled DNA. Jockusch S; Li Z; Ju J; Turro NJ Photochem Photobiol; 2005; 81(2):238-41. PubMed ID: 15656709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]