BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29603666)

  • 1. Opto-electro-thermal optimization of photonic probes for optogenetic neural stimulation.
    Dong N; Berlinguer-Palmini R; Soltan A; Ponon N; O'Neil A; Travelyan A; Maaskant P; Degenaar P; Sun X
    J Biophotonics; 2018 Oct; 11(10):e201700358. PubMed ID: 29603666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A silk-based self-adaptive flexible opto-electro neural probe.
    Zhou Y; Gu C; Liang J; Zhang B; Yang H; Zhou Z; Li M; Sun L; Tao TH; Wei X
    Microsyst Nanoeng; 2022; 8():118. PubMed ID: 36389054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature Rise under Two-Photon Optogenetic Brain Stimulation.
    Picot A; Dominguez S; Liu C; Chen IW; Tanese D; Ronzitti E; Berto P; Papagiakoumou E; Oron D; Tessier G; Forget BC; Emiliani V
    Cell Rep; 2018 Jul; 24(5):1243-1253.e5. PubMed ID: 30067979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Density, High Radiance $\mu$ LED Matrix for Optogenetic Retinal Prostheses and Planar Neural Stimulation.
    Soltan A; McGovern B; Drakakis E; Neil M; Maaskant P; Akhter M; Lee JS; Degenaar P
    IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):347-359. PubMed ID: 28212099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Scalable Optoelectronic Neural Probe Architecture With Self-Diagnostic Capability.
    Zhao H; Soltan A; Maaskant P; Dong N; Sun X; Degenaar P
    IEEE Trans Circuits Syst I Regul Pap; 2018 Aug; 65(8):2431-2442. PubMed ID: 30450493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical and thermal modeling of an optrode microdevice for infrared neural stimulation.
    Boros ÖC; Horváth ÁC; Beleznai S; Sepsi Ö; Lenk S; Fekete Z; Koppa P
    Appl Opt; 2018 Aug; 57(24):6952-6957. PubMed ID: 30129582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implantable photonic neural probes with out-of-plane focusing grating emitters.
    Xue T; Stalmashonak A; Chen FD; Ding P; Luo X; Chua H; Lo GQ; Sacher WD; Poon JKS
    Sci Rep; 2024 Jun; 14(1):13812. PubMed ID: 38877050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics.
    Segev E; Reimer J; Moreaux LC; Fowler TM; Chi D; Sacher WD; Lo M; Deisseroth K; Tolias AS; Faraon A; Roukes ML
    Neurophotonics; 2017 Jan; 4(1):011002. PubMed ID: 27990451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LED Optrode with Integrated Temperature Sensing for Optogenetics.
    Goncalves SB; Palha JM; Fernandes HC; Souto MR; Pimenta S; Dong T; Yang Z; Ribeiro JF; Correia JH
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Development of An Implantable Optrode for Optogenetic Stimulation].
    Yue S; Yuan M; Zhang Y; Wang X; Wang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):337-42. PubMed ID: 29708670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies.
    Ayub S; Gentet LJ; Fiáth R; Schwaerzle M; Borel M; David F; Barthó P; Ulbert I; Paul O; Ruther P
    Biomed Microdevices; 2017 Sep; 19(3):49. PubMed ID: 28560702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal Functional Analysis Platform: 2. Development of Si Opto-Electro Multifunctional Neural Probe with Multiple Optical Waveguides and Embedded Optical Fiber for Optogenetics.
    Tanaka T; Katayama N; Sakamoto K; Osanai M; Mushiake H
    Adv Exp Med Biol; 2021; 1293():481-491. PubMed ID: 33398835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress of Development of Optogenetic Implantable Neural Probes.
    Zhao H
    Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28800085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Painting with Rainbows: Patterning Light in Space, Time, and Wavelength for Multiphoton Optogenetic Sensing and Control.
    Brinks D; Adam Y; Kheifets S; Cohen AE
    Acc Chem Res; 2016 Nov; 49(11):2518-2526. PubMed ID: 27786461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-wavelength light emitting diode-based disposable optrode array for in vivo optogenetic modulation.
    Jeon S; Kim JH; Lee H; Kim YK; Jun SB; Lee SH; Ji CH
    J Biophotonics; 2019 May; 12(5):e201800343. PubMed ID: 30588762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting and managing heat dissipation from a neural probe.
    Smith AN; Christian MP; Firebaugh SL; Cooper GW; Jamieson BG
    Biomed Microdevices; 2015 Aug; 17(4):81. PubMed ID: 26223563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated μLED optrode for optogenetic stimulation and electrical recording.
    Cao H; Gu L; Mohanty SK; Chiao JC
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation.
    McAlinden N; Massoubre D; Richardson E; Gu E; Sakata S; Dawson MD; Mathieson K
    Opt Lett; 2013 Mar; 38(6):992-4. PubMed ID: 23503284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices.
    Wang Y; Lin X; Chen X; Chen X; Xu Z; Zhang W; Liao Q; Duan X; Wang X; Liu M; Wang F; He J; Shi P
    Biomaterials; 2017 Oct; 142():136-148. PubMed ID: 28735174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.