These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29603666)

  • 41. Fiber-optic two-photon optogenetic stimulation.
    Dhakal K; Gu L; Black B; Mohanty SK
    Opt Lett; 2013 Jun; 38(11):1927-9. PubMed ID: 23722792
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MicroLED neural probe for effective in vivo optogenetic stimulation.
    Yasunaga H; Takeuchi H; Mizuguchi K; Nishikawa A; Loesing A; Ishikawa M; Kamiyoshihara C; Setogawa S; Ohkawa N; Sekiguchi H
    Opt Express; 2022 Oct; 30(22):40292-40305. PubMed ID: 36298964
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe.
    Scharf R; Tsunematsu T; McAlinden N; Dawson MD; Sakata S; Mathieson K
    Sci Rep; 2016 Jun; 6():28381. PubMed ID: 27334849
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Light distribution and thermal effects in the rat brain under optogenetic stimulation.
    Gysbrechts B; Wang L; Trong NN; Cabral H; Navratilova Z; Battaglia F; Saeys W; Bartic C
    J Biophotonics; 2016 Jun; 9(6):576-85. PubMed ID: 26192551
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fabrication and modification of implantable optrode arrays for
    Wang L; Huang K; Zhong C; Wang L; Lu Y
    Biophys Rep; 2018; 4(2):82-93. PubMed ID: 29756008
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scattering of Sculpted Light in Intact Brain Tissue, with implications for Optogenetics.
    Favre-Bulle IA; Preece D; Nieminen TA; Heap LA; Scott EK; Rubinsztein-Dunlop H
    Sci Rep; 2015 Jun; 5():11501. PubMed ID: 26108566
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental assessment of the safety and potential efficacy of high irradiance photostimulation of brain tissues.
    Senova S; Scisniak I; Chiang CC; Doignon I; Palfi S; Chaillet A; Martin C; Pain F
    Sci Rep; 2017 Mar; 7():43997. PubMed ID: 28276522
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics.
    Park SI; Shin G; McCall JG; Al-Hasani R; Norris A; Xia L; Brenner DS; Noh KN; Bang SY; Bhatti DL; Jang KI; Kang SK; Mickle AD; Dussor G; Price TJ; Gereau RW; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8169-E8177. PubMed ID: 27911798
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel carbon tipped single micro-optrode for combined optogenetics and electrophysiology.
    Budai D; Vizvári AD; Bali ZK; Márki B; Nagy LV; Kónya Z; Madarász D; Henn-Mike N; Varga C; Hernádi I
    PLoS One; 2018; 13(3):e0193836. PubMed ID: 29513711
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications.
    Shim E; Chen Y; Masmanidis S; Li M
    Sci Rep; 2016 Mar; 6():22693. PubMed ID: 26941111
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pulse-Width Modulation of Optogenetic Photo-Stimulation Intensity for Application to Full-Implantable Light Sources.
    Chen FB; Budgett DM; Sun Y; Malpas S; McCormick D; Freestone PS
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):28-34. PubMed ID: 27542183
    [TBL] [Abstract][Full Text] [Related]  

  • 53.
    McAlinden N; Reiche CF; Clark AM; Scharf R; Cheng Y; Sharma R; Rieth L; Dawson MD; Angelucci A; Mathieson K; Blair S
    bioRxiv; 2024 Mar; ():. PubMed ID: 38562871
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optical phased array neural probes for beam-steering in brain tissue.
    Sacher WD; Chen FD; Moradi-Chameh H; Liu X; Felts Almog I; Lordello T; Chang M; Naderian A; Fowler TM; Segev E; Xue T; Mahallati S; Valiante TA; Moreaux LC; Poon JKS; Roukes ML
    Opt Lett; 2022 Mar; 47(5):1073-1076. PubMed ID: 35230293
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improving the opto-thermal performance of transmissive laser-based white light sources through beam shaping.
    Correia A; Hanselaer P; Meuret Y
    Opt Express; 2019 Apr; 27(8):A235-A244. PubMed ID: 31052878
    [TBL] [Abstract][Full Text] [Related]  

  • 56. FEF inactivation with improved optogenetic methods.
    Acker L; Pino EN; Boyden ES; Desimone R
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7297-E7306. PubMed ID: 27807140
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analytical approaches for determining heat distributions and thermal criteria for infrared neural stimulation.
    Norton BJ; Bowler MA; Wells JD; Keller MD
    J Biomed Opt; 2013 Sep; 18(9):098001. PubMed ID: 24002195
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optogenetic probing of mitochondrial damage responses.
    Yang WY
    Ann N Y Acad Sci; 2015 Sep; 1350():48-51. PubMed ID: 26104771
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiplexed Optogenetic Stimulation of Neurons with Spectrum-Selective Upconversion Nanoparticles.
    Lin X; Wang Y; Chen X; Yang R; Wang Z; Feng J; Wang H; Lai KWC; He J; Wang F; Shi P
    Adv Healthc Mater; 2017 Sep; 6(17):. PubMed ID: 28795515
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour.
    Husson SJ; Gottschalk A; Leifer AM
    Biol Cell; 2013 Jun; 105(6):235-50. PubMed ID: 23458457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.