These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29603681)

  • 1. A comparative CFD study of four inferior vena cava filters.
    López JM; Fortuny G; Puigjaner D; Herrero J; Marimon F
    Int J Numer Method Biomed Eng; 2018 Jul; 34(7):e2990. PubMed ID: 29603681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental and computational study of the inferior vena cava hemodynamics under respiratory-induced collapse of the infrarenal IVC.
    Tedaldi E; Montanari C; Aycock KI; Sturla F; Redaelli A; Manning KB
    Med Eng Phys; 2018 Apr; 54():44-55. PubMed ID: 29487036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational method for predicting inferior vena cava filter performance on a patient-specific basis.
    Aycock KI; Campbell RL; Manning KB; Sastry SP; Shontz SM; Lynch FC; Craven BA
    J Biomech Eng; 2014 Aug; 136(8):. PubMed ID: 24805200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Importance of Hemorheology and Patient Anatomy on the Hemodynamics in the Inferior Vena Cava.
    Aycock KI; Campbell RL; Lynch FC; Manning KB; Craven BA
    Ann Biomed Eng; 2016 Dec; 44(12):3568-3582. PubMed ID: 27272211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady Flow in a Patient-Averaged Inferior Vena Cava-Part II: Computational Fluid Dynamics Verification and Validation.
    Craven BA; Aycock KI; Manning KB
    Cardiovasc Eng Technol; 2018 Dec; 9(4):654-673. PubMed ID: 30446978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of retrievable inferior vena cava filters with computed tomography findings indicating tenting or penetration of the inferior vena cava wall.
    Oh JC; Trerotola SO; Dagli M; Shlansky-Goldberg RD; Soulen MC; Itkin M; Mondschein J; Solomon J; Stavropoulos SW
    J Vasc Interv Radiol; 2011 Jan; 22(1):70-4. PubMed ID: 21106393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Hemodynamic analysis of a new retrievable vena cava filter].
    Chen S; Feng H; Li X; Gu J; Wang X; Cao P; Wang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):245-253. PubMed ID: 31016941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in radial expansion force among inferior vena cava filter models support documented perforation rates.
    Robins JE; Ragai I; Yamaguchi DJ
    J Vasc Surg Venous Lymphat Disord; 2018 May; 6(3):368-371. PubMed ID: 29396157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical analysis of the hemodynamics and embolus capture of a greenfield vena cava filter.
    Swaminathan TN; Hu HH; Patel AA
    J Biomech Eng; 2006 Jun; 128(3):360-70. PubMed ID: 16706585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodynamic effects of blood clots trapped by an inferior vena cava filter.
    López JM; Fortuny G; Puigjaner D; Herrero J; Marimon F
    Int J Numer Method Biomed Eng; 2020 Jul; 36(7):e3343. PubMed ID: 32323487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of hemodynamic effects of different inferior vena cava filter heads using computational fluid dynamics.
    Li M; Wang J; Huang W; Zhou Y; Song X
    Front Bioeng Biotechnol; 2022; 10():1034120. PubMed ID: 36299290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A resolved two-way coupled CFD/6-DOF approach for predicting embolus transport and the embolus-trapping efficiency of IVC filters.
    Aycock KI; Campbell RL; Manning KB; Craven BA
    Biomech Model Mechanobiol; 2017 Jun; 16(3):851-869. PubMed ID: 27904980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laparoscopic demonstration of vena cava wall penetration by inferior vena cava filters in an ovine model.
    Laborda A; Lostalé F; Rodríguez JB; Bielsa MÁ; Martínez MÁ; Serrano C; Fernández R; De Gregorio MÁ
    J Vasc Interv Radiol; 2011 Jun; 22(6):851-6. PubMed ID: 21481604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vitro comparison of the hemodynamics of two inferior vena cava filters.
    Couch GG; Johnston KW; Ojha M
    J Vasc Surg; 2000 Mar; 31(3):539-49. PubMed ID: 10709068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A physiologic in vitro model of the inferior vena cava with a computer-controlled flow system for testing of inferior vena cava filters.
    Jaeger HJ; Mair T; Geller M; Kinne RK; Christmann A; Mathias KD
    Invest Radiol; 1997 Sep; 32(9):511-22. PubMed ID: 9291039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of clinically available inferior vena cava filters with an in vitro physiologic simulation of the vena cava.
    Simon M; Rabkin DJ; Kleshinski S; Kim D; Ransil BJ
    Radiology; 1993 Dec; 189(3):769-74. PubMed ID: 8234702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Failed inferior vena cava filter retrieval by conventional method: Analysis of its causes and retrieval of it by modified double-loop technique.
    Cho E; Lim KJ; Jo JH; Jung GS; Park BH
    Phlebology; 2015 Sep; 30(8):549-56. PubMed ID: 25096757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of reverse deployment of cone-shaped vena cava filter on improvements in hemodynamic performance in vena cava.
    Chen Y; Xu Z; Deng X; Yang S; Tan W; Fan Y; Han Y; Xing Y
    Biomed Eng Online; 2021 Feb; 20(1):19. PubMed ID: 33563284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational evaluation of inferior vena cava filters through computational fluid dynamics methods.
    Rajan A; S Makary M; D Martyn T; D Dowell J
    Diagn Interv Radiol; 2021 Jan; 27(1):116-121. PubMed ID: 33252333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New method for ultrasound-guided inferior vena cava filter placement.
    Qin X; Lu C; Ren P; Gu J; Zheng Y; Yu C; Wang J; Xie M
    J Vasc Surg Venous Lymphat Disord; 2018 Jul; 6(4):450-456. PubMed ID: 29602758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.