These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29603714)

  • 1. Sensitivity analysis and power for instrumental variable studies.
    Wang X; Jiang Y; Zhang NR; Small DS
    Biometrics; 2018 Dec; 74(4):1150-1160. PubMed ID: 29603714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model assisted sensitivity analyses for hidden bias with binary outcomes.
    Nattino G; Lu B
    Biometrics; 2018 Dec; 74(4):1141-1149. PubMed ID: 29992547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two robust tools for inference about causal effects with invalid instruments.
    Kang H; Lee Y; Cai TT; Small DS
    Biometrics; 2022 Mar; 78(1):24-34. PubMed ID: 33616910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On a preference-based instrumental variable approach in reducing unmeasured confounding-by-indication.
    Li Y; Lee Y; Wolfe RA; Morgenstern H; Zhang J; Port FK; Robinson BM
    Stat Med; 2015 Mar; 34(7):1150-68. PubMed ID: 25546152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instrumental variable analysis of multiplicative models with potentially invalid instruments.
    Shardell M; Ferrucci L
    Stat Med; 2016 Dec; 35(29):5430-5447. PubMed ID: 27527517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tutorial on the use of instrumental variables in pharmacoepidemiology.
    Ertefaie A; Small DS; Flory JH; Hennessy S
    Pharmacoepidemiol Drug Saf; 2017 Apr; 26(4):357-367. PubMed ID: 28239929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weak-instrument robust tests in two-sample summary-data Mendelian randomization.
    Wang S; Kang H
    Biometrics; 2022 Dec; 78(4):1699-1713. PubMed ID: 34213007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing concordance of instrumental variable effects in generalized linear models with application to Mendelian randomization.
    Dai JY; Chan KC; Hsu L
    Stat Med; 2014 Oct; 33(23):3986-4007. PubMed ID: 24863158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sample size importantly limits the usefulness of instrumental variable methods, depending on instrument strength and level of confounding.
    Boef AG; Dekkers OM; Vandenbroucke JP; le Cessie S
    J Clin Epidemiol; 2014 Nov; 67(11):1258-64. PubMed ID: 25124167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses.
    Palmer TM; Thompson JR; Tobin MD; Sheehan NA; Burton PR
    Int J Epidemiol; 2008 Oct; 37(5):1161-8. PubMed ID: 18463132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valid instrumental variable selection method using negative control outcomes and constructing efficient estimator.
    Orihara S; Goto A; Taguri M
    Biom J; 2024 Jun; 66(4):e2300113. PubMed ID: 38801216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of instrumental variable estimators for Mendelian randomization.
    Burgess S; Small DS; Thompson SG
    Stat Methods Med Res; 2017 Oct; 26(5):2333-2355. PubMed ID: 26282889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic instrumental variable analysis: time to call mendelian randomization what it is. The example of alcohol and cardiovascular disease.
    Mukamal KJ; Stampfer MJ; Rimm EB
    Eur J Epidemiol; 2020 Feb; 35(2):93-97. PubMed ID: 31761964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Avoiding bias from weak instruments in Mendelian randomization studies.
    Burgess S; Thompson SG;
    Int J Epidemiol; 2011 Jun; 40(3):755-64. PubMed ID: 21414999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Power and sample size calculations for Mendelian randomization studies using one genetic instrument.
    Freeman G; Cowling BJ; Schooling CM
    Int J Epidemiol; 2013 Aug; 42(4):1157-63. PubMed ID: 23934314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the impact of unmeasured confounding for binary outcomes using confounding functions.
    Kasza J; Wolfe R; Schuster T
    Int J Epidemiol; 2017 Aug; 46(4):1303-1311. PubMed ID: 28338913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general approach to sensitivity analysis for Mendelian randomization.
    Zhang W; Ghosh D
    Stat Biosci; 2021 Apr; 13(1):34-55. PubMed ID: 33737984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mendelian randomization with Egger pleiotropy correction and weakly informative Bayesian priors.
    Schmidt AF; Dudbridge F
    Int J Epidemiol; 2018 Aug; 47(4):1217-1228. PubMed ID: 29253155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An introduction to instrumental variables--part 2: Mendelian randomisation.
    Bennett DA
    Neuroepidemiology; 2010; 35(4):307-10. PubMed ID: 21042034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eliminating Survivor Bias in Two-stage Instrumental Variable Estimators.
    Vansteelandt S; Walter S; Tchetgen Tchetgen E
    Epidemiology; 2018 Jul; 29(4):536-541. PubMed ID: 29652757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.