BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29603873)

  • 1. In vitro assessment of electrospun polyamide-6 scaffolds for esophageal tissue engineering.
    Zhuravleva M; Gilazieva Z; Grigoriev TE; Shepelev AD; Kh Tenchurin T; Kamyshinsky R; Krasheninnikov SV; Orlov S; Caralogli G; Archipova S; Holterman MJ; Mavlikeev M; Deev RV; Chvalun SN; Macchiarini P
    J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):253-268. PubMed ID: 29603873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multilayer scaffold design with spatial arrangement of cells to modulate esophageal tissue growth.
    Soliman S; Laurent J; Kalenjian L; Burnette K; Hedberg B; La Francesca S
    J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):324-331. PubMed ID: 29717817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering.
    Carvalho MS; Silva JC; Udangawa RN; Cabral JMS; Ferreira FC; da Silva CL; Linhardt RJ; Vashishth D
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():479-490. PubMed ID: 30889723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation.
    Wu S; Wang Y; Streubel PN; Duan B
    Acta Biomater; 2017 Oct; 62():102-115. PubMed ID: 28864251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coated electrospun polyamide-6/chitosan scaffold with hydroxyapatite for bone tissue engineering.
    Niu X; Qin M; Xu M; Zhao L; Wei Y; Hu Y; Lian X; Chen S; Chen W; Huang D
    Biomed Mater; 2021 Feb; 16(2):025014. PubMed ID: 33361571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and in vivo biological characterization of poly(lactic acid) fiber scaffolds synthesized by air jet spinning.
    Granados-Hernández MV; Serrano-Bello J; Montesinos JJ; Alvarez-Gayosso C; Medina-Velázquez LA; Alvarez-Fregoso O; Alvarez-Perez MA
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2435-2446. PubMed ID: 29193687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture.
    Kuss MA; Wu S; Wang Y; Untrauer JB; Li W; Lim JY; Duan B
    J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1788-1798. PubMed ID: 28901689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: A comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton's jelly, and adipose tissue.
    Kargozar S; Mozafari M; Hashemian SJ; Brouki Milan P; Hamzehlou S; Soleimani M; Joghataei MT; Gholipourmalekabadi M; Korourian A; Mousavizadeh K; Seifalian AM
    J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):61-72. PubMed ID: 27862947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of egg white ovomucin-based porous scaffold as an implantable biomaterial for tissue engineering.
    Carpena NT; Abueva CDG; Padalhin AR; Lee BT
    J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):2107-2117. PubMed ID: 27405539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber length and concentration: Synergistic effect on mechanical and cellular response in wet-laid poly(lactic acid) fibrous scaffolds.
    Wood AT; Everett D; Kumar S; Mishra MK; Thomas V
    J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):332-341. PubMed ID: 29656479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential use of silkworm gut fiber braids as scaffolds for tendon and ligament tissue engineering.
    Pagán A; Aznar-Cervantes SD; Pérez-Rigueiro J; Meseguer-Olmo L; Cenis JL
    J Biomed Mater Res B Appl Biomater; 2019 Oct; 107(7):2209-2215. PubMed ID: 30675993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viability and proliferation of rat MSCs on adhesion protein-modified PET and PU scaffolds.
    Gustafsson Y; Haag J; Jungebluth P; Lundin V; Lim ML; Baiguera S; Ajalloueian F; Del Gaudio C; Bianco A; Moll G; Sjöqvist S; Lemon G; Teixeira AI; Macchiarini P
    Biomaterials; 2012 Nov; 33(32):8094-103. PubMed ID: 22901964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility properties of polyamide 6/PCL blends composite textile scaffold using EA.hy926 human endothelial cells.
    Abdal-Hay A; Abdelrazek Khalil K; Al-Jassir FF; Gamal-Eldeen AM
    Biomed Mater; 2017 May; 12(3):035002. PubMed ID: 28238969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds.
    Zajicova A; Pokorna K; Lencova A; Krulova M; Svobodova E; Kubinova S; Sykova E; Pradny M; Michalek J; Svobodova J; Munzarova M; Holan V
    Cell Transplant; 2010; 19(10):1281-90. PubMed ID: 20573307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and
    Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R
    Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of scaffold morphology and cell co-culture on tenogenic differentiation of HADMSC on centrifugal melt electrospun poly (L‑lactic acid) fibrous meshes.
    Wu S; Peng H; Li X; Streubel PN; Liu Y; Duan B
    Biofabrication; 2017 Nov; 9(4):044106. PubMed ID: 29134948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone engineering in dog mandible: Coculturing mesenchymal stem cells with endothelial progenitor cells in a composite scaffold containing vascular endothelial growth factor.
    Khojasteh A; Fahimipour F; Jafarian M; Sharifi D; Jahangir S; Khayyatan F; Baghaban Eslaminejad M
    J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):1767-1777. PubMed ID: 27186846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro cyclic compressive loads potentiate early osteogenic events in engineered bone tissue.
    Ravichandran A; Lim J; Chong MSK; Wen F; Liu Y; Pillay YT; Chan JKY; Teoh SH
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2366-2375. PubMed ID: 27527120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual electrospinning with sacrificial fibers for engineered porosity and enhancement of tissue ingrowth.
    Voorneveld J; Oosthuysen A; Franz T; Zilla P; Bezuidenhout D
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1559-1572. PubMed ID: 27125901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering.
    Salifu AA; Lekakou C; Labeed FH
    J Biomed Mater Res A; 2017 Jul; 105(7):1911-1926. PubMed ID: 28263431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.