BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29603933)

  • 1. Human S-cone electroretinograms obtained by silent substitution stimulation.
    Maguire J; Parry NRA; Kremers J; Murray IJ; McKeefry D
    J Opt Soc Am A Opt Image Sci Vis; 2018 Apr; 35(4):B11-B18. PubMed ID: 29603933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-color pupillometry in enhanced S-cone syndrome caused by NR2E3 mutations.
    Collison FT; Park JC; Fishman GA; Stone EM; McAnany JJ
    Doc Ophthalmol; 2016 Jun; 132(3):157-66. PubMed ID: 27033713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoreceptor-specific light adaptation of critical flicker frequency in trichromat and dichromat observers.
    Huchzermeyer C; Martins CMG; Nagy B; Barboni MTS; Ventura DF; Costa MF; Kremers J
    J Opt Soc Am A Opt Image Sci Vis; 2018 Apr; 35(4):B106-B113. PubMed ID: 29603928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo electroretinographic differentiation of rod, short-wavelength and long/medium-wavelength cone responses in dogs using silent substitution stimuli.
    Mowat FM; Wise E; Oh A; Foster ML; Kremers J
    Exp Eye Res; 2019 Aug; 185():107673. PubMed ID: 31128103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cone Vision Changes in the Enhanced S-Cone Syndrome Caused by NR2E3 Gene Mutations.
    Garafalo AV; Calzetti G; Cideciyan AV; Roman AJ; Saxena S; Sumaroka A; Choi W; Wright AF; Jacobson SG
    Invest Ophthalmol Vis Sci; 2018 Jul; 59(8):3209-3219. PubMed ID: 29971438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vision in observers with enhanced S-cone syndrome: an excess of s-cones but connected mainly to conventional s-cone pathways.
    Ripamonti C; Aboshiha J; Henning GB; Sergouniotis PI; Michaelides M; Moore AT; Webster AR; Stockman A
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):963-76. PubMed ID: 24425859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroretinography and optical coherence tomography reveal abnormal post-photoreceptoral activity and altered retinal lamination in patients with enhanced S-cone syndrome.
    Sustar M; Perovšek D; Cima I; Stirn-Kranjc B; Hawlina M; Brecelj J
    Doc Ophthalmol; 2015 Jun; 130(3):165-77. PubMed ID: 25663266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced S-Cone Syndrome (Goldmann-Favre Syndrome).
    Tsang SH; Sharma T
    Adv Exp Med Biol; 2018; 1085():153-156. PubMed ID: 30578501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progressive cone dystrophy with deutan genotype and phenotype.
    Scholl HP; Kremers J; Besch D; Zrenner E; Jägle H
    Graefes Arch Clin Exp Ophthalmol; 2006 Feb; 244(2):183-91. PubMed ID: 16082559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silent substitution stimulation of S-cone pathway and L- and M-cone pathway in glaucoma.
    Bessler P; Klee S; Kellner U; Haueisen J
    Invest Ophthalmol Vis Sci; 2010 Jan; 51(1):319-26. PubMed ID: 19710415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced S cone syndrome: evidence for an abnormally large number of S cones.
    Hood DC; Cideciyan AV; Roman AJ; Jacobson SG
    Vision Res; 1995 May; 35(10):1473-81. PubMed ID: 7645276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paradoxical pupil responses to isolated M-cone increments.
    Murray IJ; Kremers J; McKeefry D; Parry NRA
    J Opt Soc Am A Opt Image Sci Vis; 2018 Apr; 35(4):B66-B71. PubMed ID: 29603924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective reduction of S-cone response and on-response in the cone electroretinograms of patients with X-linked retinoschisis.
    Yamamoto S; Hayashi M; Tsuruoka M; Ogata K; Tsukahara I; Yamamoto T; Takeuchi S
    Graefes Arch Clin Exp Ophthalmol; 2002 Jun; 240(6):457-60. PubMed ID: 12107512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blue cone monochromacy: visual function and efficacy outcome measures for clinical trials.
    Luo X; Cideciyan AV; Iannaccone A; Roman AJ; Ditta LC; Jennings BJ; Yatsenko SA; Sheplock R; Sumaroka A; Swider M; Schwartz SB; Wissinger B; Kohl S; Jacobson SG
    PLoS One; 2015; 10(4):e0125700. PubMed ID: 25909963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The morphology of human rod ERGs obtained by silent substitution stimulation.
    Maguire J; Parry NR; Kremers J; Murray IJ; McKeefry D
    Doc Ophthalmol; 2017 Feb; 134(1):11-24. PubMed ID: 28091887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reappraisal of a short-wavelength-sensitive (S-cone) recording technique in routine clinical electroretinography.
    Simonsen SE; Rosenberg T
    Doc Ophthalmol; 1995-1996; 91(4):323-32. PubMed ID: 8899302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rod- versus cone-driven ERGs at different stimulus sizes in normal subjects and retinitis pigmentosa patients.
    Aher AJ; McKeefry DJ; Parry NRA; Maguire J; Murray IJ; Tsai TI; Huchzermeyer C; Kremers J
    Doc Ophthalmol; 2018 Feb; 136(1):27-43. PubMed ID: 29134295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ERGs, cone-isolating VEPs and analytical techniques in children with cone dysfunction syndromes.
    Kelly JP; Crognale MA; Weiss AH
    Doc Ophthalmol; 2003 May; 106(3):289-304. PubMed ID: 12737507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cone signal contributions to electroretinograms [correction of electrograms] in dichromats and trichromats.
    Kremers J; Usui T; Scholl HP; Sharpe LT
    Invest Ophthalmol Vis Sci; 1999 Apr; 40(5):920-30. PubMed ID: 10102289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrodiagnosis of dichromacy.
    Barboni MTS; Hauzman E; Nagy BV; Martins CMG; Aher AJ; Tsai TI; Bonci DMO; Ventura DF; Kremers J
    Vision Res; 2019 May; 158():135-145. PubMed ID: 30844384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.