BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29604129)

  • 1. Bicelle size modulates the rate of bacteriorhodopsin folding.
    Gruenhagen TC; Ziarek JJ; Schlebach JP
    Protein Sci; 2018 Jun; 27(6):1109-1112. PubMed ID: 29604129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the folding kinetics of bacteriorhodopsin.
    Schlebach JP; Cao Z; Bowie JU; Park C
    Protein Sci; 2012 Jan; 21(1):97-106. PubMed ID: 22095725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using micellar mole fractions to assess membrane protein stability in mixed micelles.
    Sehgal P; Mogensen JE; Otzen DE
    Biochim Biophys Acta; 2005 Oct; 1716(1):59-68. PubMed ID: 16168383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring membrane protein stability under native conditions.
    Chang YC; Bowie JU
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):219-24. PubMed ID: 24367094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of a covalently bound cofactor to the folding and thermodynamic stability of an integral membrane protein.
    Curnow P; Booth PJ
    J Mol Biol; 2010 Nov; 403(4):630-42. PubMed ID: 20850459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that bilayer bending rigidity affects membrane protein folding.
    Booth PJ; Riley ML; Flitsch SL; Templer RH; Farooq A; Curran AR; Chadborn N; Wright P
    Biochemistry; 1997 Jan; 36(1):197-203. PubMed ID: 8993334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unravelling the folding of bacteriorhodopsin.
    Booth PJ
    Biochim Biophys Acta; 2000 Aug; 1460(1):4-14. PubMed ID: 10984586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The final stages of folding of the membrane protein bacteriorhodopsin occur by kinetically indistinguishable parallel folding paths that are mediated by pH.
    Lu H; Booth PJ
    J Mol Biol; 2000 May; 299(1):233-43. PubMed ID: 10860735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermediates in the folding of the membrane protein bacteriorhodopsin.
    Booth PJ; Flitsch SL; Stern LJ; Greenhalgh DA; Kim PS; Khorana HG
    Nat Struct Biol; 1995 Feb; 2(2):139-43. PubMed ID: 7749918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure.
    Faham S; Bowie JU
    J Mol Biol; 2002 Feb; 316(1):1-6. PubMed ID: 11829498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of folding and assembly of the membrane protein bacteriorhodopsin by intermolecular forces within the lipid bilayer.
    Curran AR; Templer RH; Booth PJ
    Biochemistry; 1999 Jul; 38(29):9328-36. PubMed ID: 10413507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal binding during folding and assembly of the membrane protein bacteriorhodopsin.
    Booth PJ; Farooq A; Flitsch SL
    Biochemistry; 1996 May; 35(18):5902-9. PubMed ID: 8639552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the folding and unfolding of wild-type and mutant forms of bacteriorhodopsin in micellar solutions: evaluation of reversible unfolding conditions.
    Chen GQ; Gouaux E
    Biochemistry; 1999 Nov; 38(46):15380-7. PubMed ID: 10563824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility.
    Etzkorn M; Raschle T; Hagn F; Gelev V; Rice AJ; Walz T; Wagner G
    Structure; 2013 Mar; 21(3):394-401. PubMed ID: 23415558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic evidence for an obligatory intermediate in the folding of the membrane protein bacteriorhodopsin.
    Farooq A
    Biochemistry; 1998 Oct; 37(43):15170-6. PubMed ID: 9790681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput crystallization of membrane proteins using the lipidic bicelle method.
    Ujwal R; Abramson J
    J Vis Exp; 2012 Jan; (59):e3383. PubMed ID: 22257923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of thiol-disulfide equilibria to measure the energetics of assembly of transmembrane helices in phospholipid bilayers.
    Cristian L; Lear JD; DeGrado WF
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14772-7. PubMed ID: 14657351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function in bacteriorhodopsin: the effect of the interhelical loops on the protein folding kinetics.
    Allen SJ; Kim JM; Khorana HG; Lu H; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):423-35. PubMed ID: 11327777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermediates in the assembly of bacteriorhodopsin investigated by time-resolved absorption spectroscopy.
    Booth PJ; Farooq A
    Eur J Biochem; 1997 Jun; 246(3):674-80. PubMed ID: 9219525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.