These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29604129)

  • 41. Behavior of Most Widely Spread Lipids in Isotropic Bicelles.
    Kot EF; Arseniev AS; Mineev KS
    Langmuir; 2018 Jul; 34(28):8302-8313. PubMed ID: 29924628
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrafast Protein Folding in Membrane-Mimetic Environments.
    Krainer G; Hartmann A; Anandamurugan A; Gracia P; Keller S; Schlierf M
    J Mol Biol; 2018 Feb; 430(4):554-564. PubMed ID: 29128595
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural analysis of bacteriorhodopsin solubilized by lipid-like phosphocholine biosurfactants with varying micelle concentrations.
    Wang X; Huang H; Sun C; Huang F
    J Colloid Interface Sci; 2015 Jan; 437():170-180. PubMed ID: 25313481
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetic study of folding and misfolding of diacylglycerol kinase in model membranes.
    Nagy JK; Lonzer WL; Sanders CR
    Biochemistry; 2001 Jul; 40(30):8971-80. PubMed ID: 11467959
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lipid-induced conformational changes of an integral membrane protein: an infrared spectroscopic study of the effects of Triton X-100 treatment on the purple membrane of Halobacterium halobium ET1001.
    Barnett SM; Dracheva S; Hendler R; Levin IW
    Biochemistry; 1996 Apr; 35(14):4558-67. PubMed ID: 8605206
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Methods to study folding of alpha-helical membrane proteins in lipids.
    Harris NJ; Pellowe GA; Blackholly LR; Gulaidi-Breen S; Findlay HE; Booth PJ
    Open Biol; 2022 Jul; 12(7):220054. PubMed ID: 35855589
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Folding alpha-helical membrane proteins: kinetic studies on bacteriorhodopsin.
    Booth PJ
    Fold Des; 1997; 2(6):R85-92. PubMed ID: 9427005
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins.
    Yu H; Siewny MG; Edwards DT; Sanders AW; Perkins TT
    Science; 2017 Mar; 355(6328):945-950. PubMed ID: 28254940
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bacteriorhodopsin folds through a poorly organized transition state.
    Schlebach JP; Woodall NB; Bowie JU; Park C
    J Am Chem Soc; 2014 Nov; 136(47):16574-81. PubMed ID: 25369295
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improved free-energy landscape reconstruction of bacteriorhodopsin highlights local variations in unfolding energy.
    Heenan PR; Yu H; Siewny MGW; Perkins TT
    J Chem Phys; 2018 Mar; 148(12):123313. PubMed ID: 29604885
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantifying the Native Energetics Stabilizing Bacteriorhodopsin by Single-Molecule Force Spectroscopy.
    Yu H; Jacobson DR; Luo H; Perkins TT
    Phys Rev Lett; 2020 Aug; 125(6):068102. PubMed ID: 32845671
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reversible folding of human peripheral myelin protein 22, a tetraspan membrane protein.
    Schlebach JP; Peng D; Kroncke BM; Mittendorf KF; Narayan M; Carter BD; Sanders CR
    Biochemistry; 2013 May; 52(19):3229-41. PubMed ID: 23639031
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single-molecule force spectroscopy from nanodiscs: an assay to quantify folding, stability, and interactions of native membrane proteins.
    Zocher M; Roos C; Wegmann S; Bosshart PD; Dötsch V; Bernhard F; Müller DJ
    ACS Nano; 2012 Jan; 6(1):961-71. PubMed ID: 22196235
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bicelles coming of age: an empirical approach to bicelle crystallization.
    Poulos S; Morgan JL; Zimmer J; Faham S
    Methods Enzymol; 2015; 557():393-416. PubMed ID: 25950975
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Energetics of membrane protein folding.
    Fleming KG
    Annu Rev Biophys; 2014; 43():233-55. PubMed ID: 24895854
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integral membrane protein fragment recombination after transfer from nanolipoprotein particles to bicelles.
    Lai G; Renthal R
    Biochemistry; 2013 Dec; 52(52):9405-12. PubMed ID: 24328096
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Backbone dynamics of membrane proteins in lipid bilayers: the effect of two-dimensional array formation as revealed by site-directed solid-state 13C NMR studies on [3-13C]Ala- and [1-13C]Val-labeled bacteriorhodopsin.
    Saitô H; Yamamoto K; Tuzi S; Yamaguchi S
    Biochim Biophys Acta; 2003 Oct; 1616(2):127-36. PubMed ID: 14561470
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of detergent environments on the photocycle of purified monomeric bacteriorhodopsin.
    Milder SJ; Thorgeirsson TE; Miercke LJ; Stroud RM; Kliger DS
    Biochemistry; 1991 Feb; 30(7):1751-61. PubMed ID: 1993191
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetic folding mechanism of an integral membrane protein examined by pulsed oxidative labeling and mass spectrometry.
    Pan Y; Brown L; Konermann L
    J Mol Biol; 2011 Jul; 410(1):146-58. PubMed ID: 21570983
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermodynamic stability of the bacteriorhodopsin lattice as measured by lipid dilution.
    Isenbarger TA; Krebs MP
    Biochemistry; 2001 Oct; 40(39):11923-31. PubMed ID: 11570893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.