These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29604149)

  • 1. Functional classification of protein structures by local structure matching in graph representation.
    Mills CL; Garg R; Lee JS; Tian L; Suciu A; Cooperman GD; Beuning PJ; Ondrechen MJ
    Protein Sci; 2018 Jun; 27(6):1125-1135. PubMed ID: 29604149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local structure based method for prediction of the biochemical function of proteins: Applications to glycoside hydrolases.
    Parasuram R; Mills CL; Wang Z; Somasundaram S; Beuning PJ; Ondrechen MJ
    Methods; 2016 Jan; 93():51-63. PubMed ID: 26564235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein function annotation with Structurally Aligned Local Sites of Activity (SALSAs).
    Wang Z; Yin P; Lee JS; Parasuram R; Somarowthu S; Ondrechen MJ
    BMC Bioinformatics; 2013; 14 Suppl 3(Suppl 3):S13. PubMed ID: 23514271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional classification of protein 3D structures from predicted local interaction sites.
    Parasuram R; Lee JS; Yin P; Somarowthu S; Ondrechen MJ
    J Bioinform Comput Biol; 2010 Dec; 8 Suppl 1():1-15. PubMed ID: 21155016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Characterization of Structural Genomics Proteins in the Crotonase Superfamily.
    Mills CL; Yin P; Leifer B; Ferrins L; O'Doherty GA; Beuning PJ; Ondrechen MJ
    ACS Chem Biol; 2022 Feb; 17(2):395-403. PubMed ID: 35060718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress of structural genomics initiatives: an analysis of solved target structures.
    Todd AE; Marsden RL; Thornton JM; Orengo CA
    J Mol Biol; 2005 May; 348(5):1235-60. PubMed ID: 15854658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of subfamily-specific sites based on active sites modeling and clustering.
    de Melo-Minardi RC; Bastard K; Artiguenave F
    Bioinformatics; 2010 Dec; 26(24):3075-82. PubMed ID: 20980272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FLORA: a novel method to predict protein function from structure in diverse superfamilies.
    Redfern OC; Dessailly BH; Dallman TJ; Sillitoe I; Orengo CA
    PLoS Comput Biol; 2009 Aug; 5(8):e1000485. PubMed ID: 19714201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. D-Ribulose 5-phosphate 3-epimerase: functional and structural relationships to members of the ribulose-phosphate binding (beta/alpha)8-barrel superfamily.
    Akana J; Fedorov AA; Fedorov E; Novak WR; Babbitt PC; Almo SC; Gerlt JA
    Biochemistry; 2006 Feb; 45(8):2493-503. PubMed ID: 16489742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new protein structure representation for efficient protein function prediction.
    Maghawry HA; Mostafa MG; Gharib TF
    J Comput Biol; 2014 Dec; 21(12):936-46. PubMed ID: 25343279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Annotation transfer for genomics: measuring functional divergence in multi-domain proteins.
    Hegyi H; Gerstein M
    Genome Res; 2001 Oct; 11(10):1632-40. PubMed ID: 11591640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of structural genomics: the first quindecennial.
    Grabowski M; Niedzialkowska E; Zimmerman MD; Minor W
    J Struct Funct Genomics; 2016 Mar; 17(1):1-16. PubMed ID: 26935210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of structural genomics: expectations and outcomes.
    Chandonia JM; Brenner SE
    Science; 2006 Jan; 311(5759):347-51. PubMed ID: 16424331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of similar regions of protein structures using integrated sequence and structure analysis tools.
    Peters B; Moad C; Youn E; Buffington K; Heiland R; Mooney S
    BMC Struct Biol; 2006 Mar; 6():4. PubMed ID: 16526955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance prediction of functional residues in proteins with machine learning and computed input features.
    Somarowthu S; Yang H; Hildebrand DG; Ondrechen MJ
    Biopolymers; 2011 Jun; 95(6):390-400. PubMed ID: 21254002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes.
    Burroughs AM; Allen KN; Dunaway-Mariano D; Aravind L
    J Mol Biol; 2006 Sep; 361(5):1003-34. PubMed ID: 16889794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a neural network and spatial clustering to predict the location of active sites in enzymes.
    Gutteridge A; Bartlett GJ; Thornton JM
    J Mol Biol; 2003 Jul; 330(4):719-34. PubMed ID: 12850142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships between functional subclasses and information contained in active-site and ligand-binding residues in diverse superfamilies.
    Nagao C; Nagano N; Mizuguchi K
    Proteins; 2010 Aug; 78(10):2369-84. PubMed ID: 20544971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein surface analysis for function annotation in high-throughput structural genomics pipeline.
    Binkowski TA; Joachimiak A; Liang J
    Protein Sci; 2005 Dec; 14(12):2972-81. PubMed ID: 16322579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of functional sites in proteins using conserved functional group analysis.
    Innis CA; Anand AP; Sowdhamini R
    J Mol Biol; 2004 Apr; 337(4):1053-68. PubMed ID: 15033369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.