These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 29604426)

  • 41. Development of an MFC-biosensor for determination of Pb
    Cetinkaya AY; Kuzu SL; Bilgili L
    Environ Monit Assess; 2022 Mar; 194(4):245. PubMed ID: 35246745
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On-line monitoring of heavy metals-related toxicity with a microbial fuel cell biosensor.
    Adekunle A; Raghavan V; Tartakovsky B
    Biosens Bioelectron; 2019 May; 132():382-390. PubMed ID: 30903911
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation.
    Hou B; Hu Y; Sun J
    Bioresour Technol; 2012 May; 111():105-10. PubMed ID: 22386629
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Portable, Single-Use, Paper-Based Microbial Fuel Cell Sensor for Rapid, On-Site Water Quality Monitoring.
    Cho JH; Gao Y; Choi S
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835692
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative analysis of microbial fuel cell based biosensors developed with a mixed culture and Shewanella loihica PV-4 and underlying biological mechanism.
    Yi Y; Xie B; Zhao T; Liu H
    Bioresour Technol; 2018 Oct; 265():415-421. PubMed ID: 29933189
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PTFE effect on the electrocatalysis of the oxygen reduction reaction in membraneless microbial fuel cells.
    Guerrini E; Grattieri M; Faggianelli A; Cristiani P; Trasatti S
    Bioelectrochemistry; 2015 Dec; 106(Pt A):240-7. PubMed ID: 26045153
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Development of a low-cost single chamber microbial fuel cell type BOD sensor].
    Wu F; Liu Z; Zhou SG; Wang YQ; Huang SH
    Huan Jing Ke Xue; 2009 Oct; 30(10):3099-103. PubMed ID: 19968138
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel, rapidly preparable and easily maintainable biocathode electrochemical biosensor for the continuous and stable detection of nitrite in water.
    Lin Z; Cheng S; Li H; Li L
    Sci Total Environ; 2022 Feb; 806(Pt 4):150945. PubMed ID: 34655619
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In situ microbial fuel cell-based biosensor for organic carbon.
    Peixoto L; Min B; Martins G; Brito AG; Kroff P; Parpot P; Angelidaki I; Nogueira R
    Bioelectrochemistry; 2011 Jun; 81(2):99-103. PubMed ID: 21371947
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system.
    Xie S; Liang P; Chen Y; Xia X; Huang X
    Bioresour Technol; 2011 Jan; 102(1):348-54. PubMed ID: 20685109
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of electrochemical and microbiological characterization of microbial fuel cells equipped with SPEEK and Nafion membrane electrode assemblies.
    Suzuki K; Owen R; Mok J; Mochihara H; Hosokawa T; Kubota H; Sakamoto H; Matsuda A; Tashiro Y; Futamata H
    J Biosci Bioeng; 2016 Sep; 122(3):322-8. PubMed ID: 27215833
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microbial fuel-cell-based toxicity sensor for fast monitoring of acidic toxicity.
    Shen YJ; Lefebvre O; Tan Z; Ng HY
    Water Sci Technol; 2012; 65(7):1223-8. PubMed ID: 22437019
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms.
    Uria N; Ferrera I; Mas J
    BMC Microbiol; 2017 Oct; 17(1):208. PubMed ID: 29047333
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Change in electrogenic activity of the microbial fuel cell (MFC) with the function of biocathode microenvironment as terminal electron accepting condition: influence on overpotentials and bio-electro kinetics.
    Srikanth S; Venkata Mohan S
    Bioresour Technol; 2012 Sep; 119():241-51. PubMed ID: 22728788
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel application of simple submersible yeast-based microbial fuel cells as dissolved oxygen sensors in environmental waters.
    Christwardana M; Yoshi LA; Setyonadi I; Maulana MR; Fudholi A
    Enzyme Microb Technol; 2021 Sep; 149():109831. PubMed ID: 34311895
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode.
    Sharma M; Jain P; Varanasi JL; Lal B; Rodríguez J; Lema JM; Sarma PM
    Bioresour Technol; 2013 Dec; 150():172-80. PubMed ID: 24161648
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A quantitative evaluation method for wastewater toxicity based on a microbial fuel cell.
    Lu H; Yu Y; Zhou Y; Xing F
    Ecotoxicol Environ Saf; 2019 Nov; 183():109589. PubMed ID: 31509929
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A study of microbial communities on terracotta separator and on biocathode of air breathing microbial fuel cells.
    Rago L; Zecchin S; Marzorati S; Goglio A; Cavalca L; Cristiani P; Schievano A
    Bioelectrochemistry; 2018 Apr; 120():18-26. PubMed ID: 29149665
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Detection of toxic substances in microbial fuel cells].
    Wang J; Niu H; Wu W
    Sheng Wu Gong Cheng Xue Bao; 2017 May; 33(5):720-729. PubMed ID: 28876027
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Power production and wastewater treatment simultaneously by dual-chamber microbial fuel cell technique.
    Izadi P; Rahimnejad M; Ghoreyshi A
    Biotechnol Appl Biochem; 2015; 62(4):483-8. PubMed ID: 25640146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.