These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29604672)

  • 1. Forced sound transmission through a finite-sized single leaf panel subject to a point source excitation.
    Wang C
    J Acoust Soc Am; 2018 Mar; 143(3):1567. PubMed ID: 29604672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An investigation of transmission coefficients for finite and semi-infinite coupled plate structures.
    Skeen MB; Kessissoglou NJ
    J Acoust Soc Am; 2007 Aug; 122(2):814-22. PubMed ID: 17672632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of sound transmission through, and radiation from, panels using a wave and finite element method.
    Yang Y; Mace BR; Kingan MJ
    J Acoust Soc Am; 2017 Apr; 141(4):2452. PubMed ID: 28464678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The forced radiation efficiency of finite size flat panels that are excited by incident sound.
    Davy JL
    J Acoust Soc Am; 2009 Aug; 126(2):694-702. PubMed ID: 19640035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modal sound transmission loss of a single leaf panel: Effects of inter-modal coupling.
    Wang C
    J Acoust Soc Am; 2015 Jun; 137(6):3514-22. PubMed ID: 26093438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The directivity of the sound radiation from panels and openings.
    Davy JL
    J Acoust Soc Am; 2009 Jun; 125(6):3795-805. PubMed ID: 19507962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound transmission loss characteristics of sandwich panels with a truss lattice core.
    Ehsan Moosavimehr S; Srikantha Phani A
    J Acoust Soc Am; 2017 Apr; 141(4):2921. PubMed ID: 28464661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The forced sound transmission of finite single leaf walls using a variational technique.
    Brunskog J
    J Acoust Soc Am; 2012 Sep; 132(3):1482-93. PubMed ID: 22978877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modal sound transmission loss of a single leaf panel: Asymptotic solutions.
    Wang C
    J Acoust Soc Am; 2015 Dec; 138(6):3964-75. PubMed ID: 26723350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active control of sound transmission through a rectangular panel using point-force actuators and piezoelectric film sensors.
    Sanada A; Higashiyama K; Tanaka N
    J Acoust Soc Am; 2015 Jan; 137(1):458-69. PubMed ID: 25618074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A note on the sound transmission of a spherical sound wave through a double plate structure.
    Wang X; Liu B; Zhang H
    JASA Express Lett; 2021 Apr; 1(4):045601. PubMed ID: 36154200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of surface sound pressure and absorption of a finite impedance strip for a grazing incident plane wave.
    Sum KS; Pan J
    J Acoust Soc Am; 2007 Jul; 122(1):333-44. PubMed ID: 17614493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rayleigh scattering of a spherical sound wave.
    Godin OA
    J Acoust Soc Am; 2013 Feb; 133(2):709-20. PubMed ID: 23363090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers.
    Ottink M; Brunskog J; Jeong CH; Fernandez-Grande E; Trojgaard P; Tiana-Roig E
    J Acoust Soc Am; 2016 Jan; 139(1):41-52. PubMed ID: 26827003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the use of evanescent plane waves for low-frequency energy transmission across material interfaces.
    Woods DC; Bolton JS; Rhoads JF
    J Acoust Soc Am; 2015 Oct; 138(4):2062-78. PubMed ID: 26520290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analytical model for broadband sound transmission loss of a finite single leaf wall using a metamaterial.
    Vazquez Torre JH; Brunskog J; Cutanda Henriquez V
    J Acoust Soc Am; 2020 Mar; 147(3):1697. PubMed ID: 32237801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the sound field above finite absorbers in the wave-number domain.
    Brandão E; Fernandez-Grande E
    J Acoust Soc Am; 2022 May; 151(5):3019. PubMed ID: 35649901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sound insulation of single leaf finite size rectangular plywood panels with orthotropic frequency dependent bending stiffness.
    Wareing RR; Davy JL; Pearse JR
    J Acoust Soc Am; 2016 Jan; 139(1):520-8. PubMed ID: 26827045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the sound insulation of single leaf walls: extension of Cremer's model.
    Davy JL
    J Acoust Soc Am; 2009 Oct; 126(4):1871-7. PubMed ID: 19813801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical modeling of sound transmission across finite aeroelastic panels in convicted fluids.
    Xin FX; Lu TJ
    J Acoust Soc Am; 2010 Sep; 128(3):1097-107. PubMed ID: 20815446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.