These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 29604718)

  • 1. The dynamic gammawarp auditory filterbank.
    Kates JM; Prabhu S
    J Acoust Soc Am; 2018 Mar; 143(3):1603. PubMed ID: 29604718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate estimation of compression in simultaneous masking enables the simulation of hearing impairment for normal-hearing listeners.
    Irino T; Fukawatase T; Sakaguchi M; Nisimura R; Kawahara H; Patterson RD
    Adv Exp Med Biol; 2013; 787():73-80. PubMed ID: 23716211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Dynamic Compressive Gammachirp Auditory Filterbank.
    Irino T; Patterson RD
    IEEE Trans Audio Speech Lang Process; 2006 Nov; 14(6):2222-2232. PubMed ID: 19330044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extending the domain of center frequencies for the compressive gammachirp auditory filter.
    Patterson RD; Unoki M; Irino T
    J Acoust Soc Am; 2003 Sep; 114(3):1529-42. PubMed ID: 14514206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Peripheral Compression on Syllable Perception Measured with a Hearing Impairment Simulator.
    Matsui T; Irino T; Nagae M; Kawahara H; Patterson RD
    Adv Exp Med Biol; 2016; 894():307-314. PubMed ID: 27080671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A reconfigurable digital filterbank for hearing-aid systems with a variety of sound wave decomposition plans.
    Wei Y; Liu D
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1628-35. PubMed ID: 23335662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A compressive gammachirp auditory filter for both physiological and psychophysical data.
    Irino T; Patterson RD
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):2008-22. PubMed ID: 11386554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the use of a Gammatone filterbank for a cochlear implant coding strategy.
    Tabibi S; Kegel A; Lai WK; Dillier N
    J Neurosci Methods; 2017 Feb; 277():63-74. PubMed ID: 27939961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cascades of two-pole-two-zero asymmetric resonators are good models of peripheral auditory function.
    Lyon RF
    J Acoust Soc Am; 2011 Dec; 130(6):3893-904. PubMed ID: 22225045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the roex and gammachirp filters as representations of the auditory filter.
    Unoki M; Irino T; Glasberg B; Moore BC; Patterson RD
    J Acoust Soc Am; 2006 Sep; 120(3):1474-92. PubMed ID: 17004470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Reconfigurable Sound Wave Decomposition Filterbank for Hearing Aids Based on Nonlinear Transformation.
    Huang S; Tian L; Ma X; Wei Y
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):487-96. PubMed ID: 26168447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis filterbank with low hardware complexity for subband image coding.
    Sundsbø I; Ramstad TA
    IEEE Trans Image Process; 1998; 7(12):1717-24. PubMed ID: 18276238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting phoneme and word recognition in noise using a computational model of the auditory periphery.
    Moncada-Torres A; van Wieringen A; Bruce IC; Wouters J; Francart T
    J Acoust Soc Am; 2017 Jan; 141(1):300. PubMed ID: 28147586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bio-inspired feature extraction for robust speech recognition.
    Zouhir Y; Ouni K
    Springerplus; 2014; 3():651. PubMed ID: 25485194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of spatiotemporal pattern correction using a computational model of the auditory periphery.
    Zeyl TJ; Bruce IC
    Ear Hear; 2014; 35(2):246-55. PubMed ID: 24326394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creating filters with arbitrary response characteristics for use in hearing and speech research.
    Hillenbrand J; Houde RA
    J Speech Hear Res; 1996 Apr; 39(2):390-5. PubMed ID: 8729925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A human nonlinear cochlear filterbank.
    Lopez-Poveda EA; Meddis R
    J Acoust Soc Am; 2001 Dec; 110(6):3107-18. PubMed ID: 11785812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speech enhancement by filtering in the loudness domain.
    Kollmeier B
    Acta Otolaryngol Suppl; 1990; 469():207-14. PubMed ID: 2356729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of auditory spectro-temporal modulation filtering and the decision metric for speech intelligibility prediction.
    Chabot-Leclerc A; Jørgensen S; Dau T
    J Acoust Soc Am; 2014 Jun; 135(6):3502-12. PubMed ID: 24907813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reference-Free Assessment of Speech Intelligibility Using Bispectrum of an Auditory Neurogram.
    Hossain ME; Jassim WA; Zilany MS
    PLoS One; 2016; 11(3):e0150415. PubMed ID: 26967160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.