These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29604797)

  • 1. Automated translating beam profiler for in situ laser beam spot-size and focal position measurements.
    Keaveney J
    Rev Sci Instrum; 2018 Mar; 89(3):035114. PubMed ID: 29604797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-image acquisition-based distance sensor using agile laser spot beam.
    Riza NA; Amin MJ
    Appl Opt; 2014 Sep; 53(25):5807-14. PubMed ID: 25321381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Raspberry Pi auto-aligner: Machine learning for automated alignment of laser beams.
    Mathew RS; O'Donnell R; Pizzey D; Hughes IG
    Rev Sci Instrum; 2021 Jan; 92(1):015117. PubMed ID: 33514190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-energy/pulse response and high-resolution-CMOS camera for spatiotemporal femtosecond laser pulses characterization @ 1.55 μm.
    Zapata-Farfan J; Contreras-Martínez R; Rosete-Aguilar M; Garduño-Mejía J; Castro-Marín P; Rodríguez-Herrera OG; Bruce NC; Ordóñez-Pérez M; Qureshi N; Ascanio G
    Rev Sci Instrum; 2019 Apr; 90(4):045116. PubMed ID: 31043009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slanted hole array beam profiler (SHArP)-a high-resolution portable beam profiler based on a linear aperture array.
    Cui X; Heng X; Wu J; Yaqoob Z; Scherer A; Psaltis D; Yang C
    Opt Lett; 2006 Nov; 31(21):3161-3. PubMed ID: 17041668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ real-time beam monitoring with dielectric meta-holograms.
    Blau Y; Eitan M; Egorov V; Boag A; Hanein Y; Scheuer J
    Opt Express; 2018 Oct; 26(22):28469-28483. PubMed ID: 30470019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method for measuring the focal spot size of an x-ray tube using a coded aperture mask and a digital detector.
    Russo P; Mettivier G
    Med Phys; 2011 Apr; 38(4):2099-115. PubMed ID: 21626943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion-free hybrid design laser beam propagation analyzer using a digital micromirror device and a variable focus liquid lens.
    Sheikh M; Riza NA
    Appl Opt; 2010 Jun; 49(16):D6-11. PubMed ID: 20517359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the TrueBeam machine performance check (MPC) beam constancy checks for flattened and flattening filter-free (FFF) photon beams.
    Barnes MP; Greer PB
    J Appl Clin Med Phys; 2017 Jan; 18(1):139-150. PubMed ID: 28291921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of a Gaussian laser beam spot size using a boundary diffraction wave.
    Kimura S; Munakata C
    Appl Opt; 1988 Jan; 27(1):84-8. PubMed ID: 20523550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncontact profiling techniques for intraocular lens edge measurements.
    Vahey DW; Mills MD; Patterson MR; Mueller EP
    Appl Opt; 1982 Mar; 21(5):766-77. PubMed ID: 20372537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axial scanning laser Doppler velocimeter using wavelength change without moving mechanism in sensor probe.
    Maru K
    Opt Express; 2011 Mar; 19(7):5960-9. PubMed ID: 21451621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sharper focal spot generated by 4π tight focusing of higher-order Laguerre-Gaussian radially polarized beam.
    Chen GY; Song F; Wang HT
    Opt Lett; 2013 Oct; 38(19):3937-40. PubMed ID: 24081093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two self-referencing methods for the measurement of beam spot position.
    Nyiri BJ; Smale JR; Gerig LH
    Med Phys; 2012 Dec; 39(12):7635-43. PubMed ID: 23231311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-speed, high-precision focal length measurement using double-hole mask and advanced image sensor software.
    Cao BX; Le Hoang P; Ahn S; Kim JO; Kang H; Noh J
    ISA Trans; 2018 Mar; 74():239-244. PubMed ID: 29366508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved laser-based triangulation sensor with enhanced range and resolution through adaptive optics-based active beam control.
    Reza SA; Khwaja TS; Mazhar MA; Niazi HK; Nawab R
    Appl Opt; 2017 Jul; 56(21):5996-6006. PubMed ID: 29047928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser beam imaging via multiple mode operations of the extreme dynamic range CAOS camera.
    Riza NA; Mazhar MA
    Appl Opt; 2018 Aug; 57(22):E20-E31. PubMed ID: 30117917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated touch sensing in the mouse tapered beam test using Raspberry Pi.
    Ardesch DJ; Balbi M; Murphy TH
    J Neurosci Methods; 2017 Nov; 291():221-226. PubMed ID: 28860079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimum Laser Beam Characteristics for Achieving Smoother Ablations in Laser Vision Correction.
    Verma S; Hesser J; Arba-Mosquera S
    Invest Ophthalmol Vis Sci; 2017 Apr; 58(4):2021-2037. PubMed ID: 28384723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fiber-based beam profiler for high-power laser beams in confined spaces and ultra-high vacuum.
    Brand C; Simonović K; Kiałka F; Troyer S; Geyer P; Arndt M
    Opt Express; 2020 Mar; 28(5):6164-6171. PubMed ID: 32225871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.