These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29604824)

  • 1. Experimental and theoretical investigation of the temperature dependent electronic quenching of O(
    Nuñez-Reyes D; Kłos J; Alexander MH; Dagdigian PJ; Hickson KM
    J Chem Phys; 2018 Mar; 148(12):124311. PubMed ID: 29604824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical investigation of the dynamics of O((1)D→(3)P) electronic quenching by collision with Xe.
    Dagdigian PJ; Alexander MH; Kłos J
    J Chem Phys; 2015 Aug; 143(5):054306. PubMed ID: 26254652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low Temperature Rate Constants for the Reactions of O((1)D) with N2, O2, and Ar.
    Grondin R; Loison JC; Hickson KM
    J Phys Chem A; 2016 Jul; 120(27):4838-44. PubMed ID: 26814664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and theoretical study of the collisional quenching of S(
    Lara M; Berteloite C; Paniagua M; Dayou F; Le Picard SD; Launay JM
    Phys Chem Chem Phys; 2017 Nov; 19(42):28555-28571. PubMed ID: 29063941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collision-induced nonadiabatic transitions in the second-tier ion-pair states of iodine molecule: experimental and theoretical study of the I2(f0g+) collisions with rare gas atoms.
    Akopyan ME; Novikova IY; Poretsky SA; Pravilov AM; Smolin AG; Tscherbul TV; Buchachenko AA
    J Chem Phys; 2005 May; 122(20):204318. PubMed ID: 15945735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate constants for collisional quenching of NO (A(2)Σ(+), v = 0) by He, Ne, Ar, Kr, and Xe, and infrared emission accompanying rare gas and impurity quenching.
    Few J; Hancock G
    Phys Chem Chem Phys; 2014 Jun; 16(22):11047-53. PubMed ID: 24777304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Experimental and Theoretical Investigation of the C((1)D) + N2 → C((3)P) + N2 Quenching Reaction at Low Temperature.
    Hickson KM; Loison JC; Lique F; Kłos J
    J Phys Chem A; 2016 Apr; 120(16):2504-13. PubMed ID: 27046417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic quenching of OH A 2Σ+ induced by collisions with Kr atoms.
    Lehman JH; Lester MI; Kłos J; Alexander MH; Dagdigian PJ; Herráez-Aguilar D; Aoiz FJ; Brouard M; Chadwick H; Perkins T; Seamons SA
    J Phys Chem A; 2013 Dec; 117(50):13481-90. PubMed ID: 23964894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insertion of rare gas atoms into BF3 and AlF3 molecules: an ab initio investigation.
    Jayasekharan T; Ghanty TK
    J Chem Phys; 2006 Dec; 125(23):234106. PubMed ID: 17190546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A velocity map imaging study of gold-rare gas complexes: Au-Ar, Au-Kr, and Au-Xe.
    Hopkins WS; Woodham AP; Plowright RJ; Wright TG; Mackenzie SR
    J Chem Phys; 2010 Jun; 132(21):214303. PubMed ID: 20528018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rate Constants and H-Atom Product Yields for the Reactions of O(
    Nuñez-Reyes D; Hickson KM
    J Phys Chem A; 2018 May; 122(20):4696-4703. PubMed ID: 29715024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy Transfer in the 2
    Hoshino S; Yamamoto O; Tsukiyama K
    ACS Omega; 2022 Feb; 7(4):3605-3612. PubMed ID: 35128267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and theoretical studies of the Xe-OH(A/X) quenching system.
    Kłos J; McCrudden G; Brouard M; Perkins T; Seamons SA; Herráez-Aguilar D; Aoiz FJ
    J Chem Phys; 2018 Nov; 149(18):184301. PubMed ID: 30441911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The collisional depolarization of OH(A (2)Σ(+)) and NO(A (2)Σ(+)) with Kr.
    Chadwick H; Brouard M; Chang YP; Eyles CJ; McCrudden G; Perkins T; Seamons SA; Kłos J; Alexander MH; Dagdigian PJ; Herráez-Aguilar D; Aoiz FJ
    J Chem Phys; 2014 Feb; 140(5):054306. PubMed ID: 24511939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-Transfer Kinetics for Xe (6p[1/2]
    He S; Liu D; Li X; Chu J; Guo J; Liu J; Hu S; Sang F; Jin Y
    J Phys Chem A; 2018 Jun; 122(24):5361-5369. PubMed ID: 29807430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the Gas-Phase O(
    Nuñez-Reyes D; Hickson KM
    J Phys Chem A; 2018 Apr; 122(16):4002-4008. PubMed ID: 29620894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intensity enhancement of weak O2 a1Δg → X3Σg(-) emission at 1270 nm by collisions with foreign gases.
    Hidemori T; Akai N; Kawai A; Shibuya K
    J Phys Chem A; 2012 Mar; 116(9):2032-8. PubMed ID: 22309165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental study of OH(A
    Brouard M; Lawlor J; McCrudden G; Perkins T; Seamons SA; Stevenson P; Chadwick H; Aoiz FJ
    J Chem Phys; 2017 Jun; 146(24):244313. PubMed ID: 28668067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RgBF2(+) complexes (Rg = Ar, Kr, and Xe): the cations with large stabilities.
    Lv Z; Chen GH; Li D; Wu D; Huang XC; Li ZR; Liu WG
    J Chem Phys; 2011 Apr; 134(15):154302. PubMed ID: 21513382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction electric hyperpolarizability effects in weakly bound H(2)O...Rg (Rg = He, Ne, Ar, Kr and Xe) complexes.
    Haskopoulos A; Maroulis G
    J Phys Chem A; 2010 Aug; 114(33):8730-41. PubMed ID: 20443606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.