These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 29605183)

  • 1. Systematic Evaluation of Molecular Networks for Discovery of Disease Genes.
    Huang JK; Carlin DE; Yu MK; Zhang W; Kreisberg JF; Tamayo P; Ideker T
    Cell Syst; 2018 Apr; 6(4):484-495.e5. PubMed ID: 29605183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network propagation for GWAS analysis: a practical guide to leveraging molecular networks for disease gene discovery.
    VisonĂ  G; Bouzigon E; Demenais F; Schweikert G
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38340090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data.
    Zheng G; Xu Y; Zhang X; Liu ZP; Wang Z; Chen L; Zhu XG
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):535. PubMed ID: 28155637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of novel susceptibility genes associated with seven autoimmune disorders using whole genome molecular interaction networks.
    Kara S; Pirela-Morillo GA; Gilliam CT; Wilson GD
    J Autoimmun; 2019 Feb; 97():48-58. PubMed ID: 30391024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data.
    Chen S; Mar JC
    BMC Bioinformatics; 2018 Jun; 19(1):232. PubMed ID: 29914350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential network analysis reveals the genome-wide landscape of estrogen receptor modulation in hormonal cancers.
    Hsiao TH; Chiu YC; Hsu PY; Lu TP; Lai LC; Tsai MH; Huang TH; Chuang EY; Chen Y
    Sci Rep; 2016 Mar; 6():23035. PubMed ID: 26972162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of single and module-based methods for modeling gene regulatory networks.
    Hernaez M; Blatti C; Gevaert O
    Bioinformatics; 2020 Jan; 36(2):558-567. PubMed ID: 31287491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel motif-discovery algorithm to identify co-regulatory motifs in large transcription factor and microRNA co-regulatory networks in human.
    Liang C; Li Y; Luo J; Zhang Z
    Bioinformatics; 2015 Jul; 31(14):2348-55. PubMed ID: 25788622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of regulatory modules in genome scale transcription regulatory networks.
    Song Q; Grene R; Heath LS; Li S
    BMC Syst Biol; 2017 Dec; 11(1):140. PubMed ID: 29246163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network legos: building blocks of cellular wiring diagrams.
    Murali TM; Rivera CG
    J Comput Biol; 2008 Sep; 15(7):829-44. PubMed ID: 18707557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene co-opening network deciphers gene functional relationships.
    Li W; Wang M; Sun J; Wang Y; Jiang R
    Mol Biosyst; 2017 Oct; 13(11):2428-2439. PubMed ID: 28976510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring Genome-Wide Interaction Networks.
    Altay G; Mendi O
    Methods Mol Biol; 2017; 1526():99-117. PubMed ID: 27896738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyse multiple disease subtypes and build associated gene networks using genome-wide expression profiles.
    Aibar S; Fontanillo C; Droste C; Roson-Burgo B; Campos-Laborie FJ; Hernandez-Rivas JM; De Las Rivas J
    BMC Genomics; 2015; 16 Suppl 5(Suppl 5):S3. PubMed ID: 26040557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting disease-related genes using integrated biomedical networks.
    Peng J; Bai K; Shang X; Wang G; Xue H; Jin S; Cheng L; Wang Y; Chen J
    BMC Genomics; 2017 Jan; 18(Suppl 1):1043. PubMed ID: 28198675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating genome-wide gene networks using nonparametric Bayesian network models on massively parallel computers.
    Tamada Y; Imoto S; Araki H; Nagasaki M; Print C; Charnock-Jones DS; Miyano S
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(3):683-97. PubMed ID: 20714027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iPINBPA: an integrative network-based functional module discovery tool for genome-wide association studies.
    Wang L; Mousavi P; Baranzini SE
    Pac Symp Biocomput; 2015; ():255-66. PubMed ID: 25592586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative assessment of differential network analysis methods.
    Lichtblau Y; Zimmermann K; Haldemann B; Lenze D; Hummel M; Leser U
    Brief Bioinform; 2017 Sep; 18(5):837-850. PubMed ID: 27473063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.