These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 29605329)
1. Prediction accuracy of direct and indirect approaches, and their relationships with prediction ability of calibration models. Belay TK; Dagnachew BS; Boison SA; Ådnøy T J Dairy Sci; 2018 Jul; 101(7):6174-6189. PubMed ID: 29605329 [TBL] [Abstract][Full Text] [Related]
2. An attempt at predicting blood β-hydroxybutyrate from Fourier-transform mid-infrared spectra of milk using multivariate mixed models in Polish dairy cattle. Belay TK; Dagnachew BS; Kowalski ZM; Ådnøy T J Dairy Sci; 2017 Aug; 100(8):6312-6326. PubMed ID: 28571989 [TBL] [Abstract][Full Text] [Related]
3. Genetic components of milk Fourier-transform infrared spectra used to predict breeding values for milk composition and quality traits in dairy goats. Dagnachew BS; Meuwissen TH; Adnøy T J Dairy Sci; 2013 Sep; 96(9):5933-42. PubMed ID: 23831101 [TBL] [Abstract][Full Text] [Related]
4. Genomic prediction ability for beef fatty acid profile in Nelore cattle using different pseudo-phenotypes. Chiaia HLJ; Peripolli E; de Oliveira Silva RM; Feitosa FLB; de Lemos MVA; Berton MP; Olivieri BF; Espigolan R; Tonussi RL; Gordo DGM; de Albuquerque LG; de Oliveira HN; Ferrinho AM; Mueller LF; Kluska S; Tonhati H; Pereira ASC; Aguilar I; Baldi F J Appl Genet; 2018 Nov; 59(4):493-501. PubMed ID: 30251238 [TBL] [Abstract][Full Text] [Related]
5. Genomic prediction using pooled data in a single-step genomic best linear unbiased prediction framework. Baller JL; Kachman SD; Kuehn LA; Spangler ML J Anim Sci; 2020 Jun; 98(6):. PubMed ID: 32497209 [TBL] [Abstract][Full Text] [Related]
6. Comparison of Bayesian and partial least squares regression methods for mid-infrared prediction of cheese-making properties in Montbéliarde cows. El Jabri M; Sanchez MP; Trossat P; Laithier C; Wolf V; Grosperrin P; Beuvier E; Rolet-Répécaud O; Gavoye S; Gaüzère Y; Belysheva O; Notz E; Boichard D; Delacroix-Buchet A J Dairy Sci; 2019 Aug; 102(8):6943-6958. PubMed ID: 31178172 [TBL] [Abstract][Full Text] [Related]
7. Comparison between genetic parameters of cheese yield and nutrient recovery or whey loss traits measured from individual model cheese-making methods or predicted from unprocessed bovine milk samples using Fourier-transform infrared spectroscopy. Bittante G; Ferragina A; Cipolat-Gotet C; Cecchinato A J Dairy Sci; 2014 Oct; 97(10):6560-72. PubMed ID: 25108864 [TBL] [Abstract][Full Text] [Related]
8. Accuracies of breeding values for dry matter intake using nongenotyped animals and predictor traits in different lactations. Manzanilla-Pech CIV; Veerkamp RF; de Haas Y; Calus MPL; Ten Napel J J Dairy Sci; 2017 Nov; 100(11):9103-9114. PubMed ID: 28865857 [TBL] [Abstract][Full Text] [Related]
9. Genetic parameters of measures and population-wide infrared predictions of 92 traits describing the fine composition and technological properties of milk in Italian Simmental cattle. Bonfatti V; Vicario D; Lugo A; Carnier P J Dairy Sci; 2017 Jul; 100(7):5526-5540. PubMed ID: 28478002 [TBL] [Abstract][Full Text] [Related]
10. Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data. Ferragina A; de los Campos G; Vazquez AI; Cecchinato A; Bittante G J Dairy Sci; 2015 Nov; 98(11):8133-51. PubMed ID: 26387015 [TBL] [Abstract][Full Text] [Related]
11. Random forest estimation of genomic breeding values for disease susceptibility over different disease incidences and genomic architectures in simulated cow calibration groups. Naderi S; Yin T; König S J Dairy Sci; 2016 Sep; 99(9):7261-7273. PubMed ID: 27344385 [TBL] [Abstract][Full Text] [Related]
12. Prediction of genetic merit for live weight and body condition score in dairy cows using routinely available linear type and carcass data. Berry DP; Evans RD; Kelleher MM J Dairy Sci; 2021 Jun; 104(6):6885-6896. PubMed ID: 33773797 [TBL] [Abstract][Full Text] [Related]
13. Mid-infrared spectroscopy predictions as indicator traits in breeding programs for enhanced coagulation properties of milk. Cecchinato A; De Marchi M; Gallo L; Bittante G; Carnier P J Dairy Sci; 2009 Oct; 92(10):5304-13. PubMed ID: 19762848 [TBL] [Abstract][Full Text] [Related]
14. Improving accuracy of bulls' predicted genomic breeding values for fertility using daughters' milk progesterone profiles. Tenghe AMM; Bouwman AC; Berglund B; de Koning DJ; Veerkamp RF J Dairy Sci; 2018 Jun; 101(6):5177-5193. PubMed ID: 29525306 [TBL] [Abstract][Full Text] [Related]
15. Genomic prediction ability for feed efficiency traits using different models and pseudo-phenotypes under several validation strategies in Nelore cattle. Brunes LC; Baldi F; Lopes FB; Narciso MG; Lobo RB; Espigolan R; Costa MFO; Magnabosco CU Animal; 2021 Feb; 15(2):100085. PubMed ID: 33573965 [TBL] [Abstract][Full Text] [Related]
16. Accuracy of genomic prediction using deregressed breeding values estimated from purebred and crossbred offspring phenotypes in pigs. Hidalgo AM; Bastiaansen JW; Lopes MS; Veroneze R; Groenen MA; de Koning DJ J Anim Sci; 2015 Jul; 93(7):3313-21. PubMed ID: 26440000 [TBL] [Abstract][Full Text] [Related]
17. Genetic parameters of dairy cow energy intake and body energy status predicted using mid-infrared spectrometry of milk. McParland S; Kennedy E; Lewis E; Moore SG; McCarthy B; O'Donovan M; Berry DP J Dairy Sci; 2015 Feb; 98(2):1310-20. PubMed ID: 25497815 [TBL] [Abstract][Full Text] [Related]
18. Prediction accuracies and genetic parameters for test-day traits from genomic and pedigree-based random regression models with or without heat stress interactions. Bohlouli M; Alijani S; Naderi S; Yin T; König S J Dairy Sci; 2019 Jan; 102(1):488-502. PubMed ID: 30343923 [TBL] [Abstract][Full Text] [Related]
19. Improving genetic evaluation using a multitrait single-step genomic model for ability to resume cycling after calving, measured by activity tags in Holstein cows. Ismael A; Løvendahl P; Fogh A; Lund MS; Su G J Dairy Sci; 2017 Oct; 100(10):8188-8196. PubMed ID: 28780110 [TBL] [Abstract][Full Text] [Related]
20. Evaluating the performance of machine learning methods and variable selection methods for predicting difficult-to-measure traits in Holstein dairy cattle using milk infrared spectral data. Mota LFM; Pegolo S; Baba T; Peñagaricano F; Morota G; Bittante G; Cecchinato A J Dairy Sci; 2021 Jul; 104(7):8107-8121. PubMed ID: 33865589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]