These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 29605388)
1. Emerging Actors in Diabetic Cardiomyopathy: Heartbreaker Biomarkers or Therapeutic Targets? Palomer X; Pizarro-Delgado J; Vázquez-Carrera M Trends Pharmacol Sci; 2018 May; 39(5):452-467. PubMed ID: 29605388 [TBL] [Abstract][Full Text] [Related]
2. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics. Jakubik D; Fitas A; Eyileten C; Jarosz-Popek J; Nowak A; Czajka P; Wicik Z; Sourij H; Siller-Matula JM; De Rosa S; Postula M Cardiovasc Diabetol; 2021 Feb; 20(1):55. PubMed ID: 33639953 [TBL] [Abstract][Full Text] [Related]
3. Role of AMP-activated protein kinase on cardio-metabolic abnormalities in the development of diabetic cardiomyopathy: A molecular landscape. Haye A; Ansari MA; Rahman SO; Shamsi Y; Ahmed D; Sharma M Eur J Pharmacol; 2020 Dec; 888():173376. PubMed ID: 32810493 [TBL] [Abstract][Full Text] [Related]
4. Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy. Parim B; Sathibabu Uddandrao VV; Saravanan G Heart Fail Rev; 2019 Mar; 24(2):279-299. PubMed ID: 30349977 [TBL] [Abstract][Full Text] [Related]
5. Diabetic Cardiomyopathy: Current Approach and Potential Diagnostic and Therapeutic Targets. Gilca GE; Stefanescu G; Badulescu O; Tanase DM; Bararu I; Ciocoiu M J Diabetes Res; 2017; 2017():1310265. PubMed ID: 28421204 [TBL] [Abstract][Full Text] [Related]
6. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. Palomer X; Salvadó L; Barroso E; Vázquez-Carrera M Int J Cardiol; 2013 Oct; 168(4):3160-72. PubMed ID: 23932046 [TBL] [Abstract][Full Text] [Related]
7. Subclinical Detection of Diabetic Cardiomyopathy with MicroRNAs: Challenges and Perspectives. León LE; Rani S; Fernandez M; Larico M; Calligaris SD J Diabetes Res; 2016; 2016():6143129. PubMed ID: 26770988 [TBL] [Abstract][Full Text] [Related]
8. Exercise as A Potential Therapeutic Target for Diabetic Cardiomyopathy: Insight into the Underlying Mechanisms. Seo DY; Ko JR; Jang JE; Kim TN; Youm JB; Kwak HB; Bae JH; Kim AH; Ko KS; Rhee BD; Han J Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31842522 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of cardiac dysfunction in diabetic cardiomyopathy: molecular abnormalities and phenotypical variants. Prandi FR; Evangelista I; Sergi D; Palazzuoli A; Romeo F Heart Fail Rev; 2023 May; 28(3):597-606. PubMed ID: 35001338 [TBL] [Abstract][Full Text] [Related]
11. Are targeted therapies for diabetic cardiomyopathy on the horizon? Tate M; Grieve DJ; Ritchie RH Clin Sci (Lond); 2017 May; 131(10):897-915. PubMed ID: 28473471 [TBL] [Abstract][Full Text] [Related]
12. Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Seferović PM; Paulus WJ Eur Heart J; 2015 Jul; 36(27):1718-27, 1727a-1727c. PubMed ID: 25888006 [TBL] [Abstract][Full Text] [Related]
13. Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy. Pant T; Dhanasekaran A; Fang J; Bai X; Bosnjak ZJ; Liang M; Ge ZD BMC Cardiovasc Disord; 2018 Oct; 18(1):197. PubMed ID: 30342478 [TBL] [Abstract][Full Text] [Related]
14. Argatroban Attenuates Diabetic Cardiomyopathy in Rats by Reducing Fibrosis, Inflammation, Apoptosis, and Protease-Activated Receptor Expression. Bulani Y; Sharma SS Cardiovasc Drugs Ther; 2017 Jun; 31(3):255-267. PubMed ID: 28695302 [TBL] [Abstract][Full Text] [Related]
15. Immunoadsorption can improve cardiac function in transplant candidates with non-ischemic dilated cardiomyopathy associated with diabetes mellitus. Dandel M; Englert A; Wallukat G; Riese A; Knosalla C; Stein J; Hetzer R Atheroscler Suppl; 2015 May; 18():124-33. PubMed ID: 25936316 [TBL] [Abstract][Full Text] [Related]
16. The role of microRNAs in the pathophysiology, diagnosis, and treatment of diabetic cardiomyopathy. Abdel Rhman M; Owira P J Pharm Pharmacol; 2022 Nov; 74(12):1663-1676. PubMed ID: 36130185 [TBL] [Abstract][Full Text] [Related]
17. Role of microRNA in diabetic cardiomyopathy: From mechanism to intervention. Guo R; Nair S Biochim Biophys Acta Mol Basis Dis; 2017 Aug; 1863(8):2070-2077. PubMed ID: 28344129 [TBL] [Abstract][Full Text] [Related]
18. Monoamine oxidase-A is an important source of oxidative stress and promotes cardiac dysfunction, apoptosis, and fibrosis in diabetic cardiomyopathy. Umbarkar P; Singh S; Arkat S; Bodhankar SL; Lohidasan S; Sitasawad SL Free Radic Biol Med; 2015 Oct; 87():263-73. PubMed ID: 26122707 [TBL] [Abstract][Full Text] [Related]
19. Roles and Mechanisms of Herbal Medicine for Diabetic Cardiomyopathy: Current Status and Perspective. Tian J; Zhao Y; Liu Y; Liu Y; Chen K; Lyu S Oxid Med Cell Longev; 2017; 2017():8214541. PubMed ID: 29204251 [TBL] [Abstract][Full Text] [Related]
20. Sirtuins: To Be or Not To Be in Diabetic Cardiomyopathy. Palomer X; Aguilar-Recarte D; García R; Nistal JF; Vázquez-Carrera M Trends Mol Med; 2021 Jun; 27(6):554-571. PubMed ID: 33839024 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]