These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 2960553)

  • 1. A new method for rapid and sensitive detection of bromodeoxyuridine in DNA-replicating cells.
    Crissman HA; Steinkamp JA
    Exp Cell Res; 1987 Nov; 173(1):256-61. PubMed ID: 2960553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell cycle-related changes in chromatin structure detected by flow cytometry using multiple DNA fluorochromes.
    Crissman HA; Steinkamp JA
    Eur J Histochem; 1993; 37(2):129-38. PubMed ID: 7688598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TOTO and YOYO: new very bright fluorochromes for DNA content analyses by flow cytometry.
    Hirons GT; Fawcett JJ; Crissman HA
    Cytometry; 1994 Feb; 15(2):129-40. PubMed ID: 7513274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the BrdU/thymidine method to flow cytogenetics: differential quenching/enhancement of Hoechst 33258 fluorescence of late-replicating chromosomes.
    Cremer C; Gray JW
    Somatic Cell Genet; 1982 May; 8(3):319-27. PubMed ID: 6180487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluorometric analysis of cellular DNA following incorporation of bromodeoxyuridine.
    Swartzendruber DE
    J Cell Physiol; 1977 Mar; 90(3):445-53. PubMed ID: 67119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow cytometric analysis of chromosomes and cells using a modified BrdU-Hoechst method.
    Severin E; Ohnemus B
    Histochemistry; 1982; 76(1):113-21. PubMed ID: 6184345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow cytometric analysis of bromodeoxyuridine-substituted cells stained with 33258 Hoechst.
    Latt SA; George YS; Gray JW
    J Histochem Cytochem; 1977 Jul; 25(7):927-34. PubMed ID: 70460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow cytometric determination of cell cycle parameters of V79 cells by continuous labeling with bromodeoxyuridine.
    Fujikawa-Yamamoto K; Miyashita N; Odashima S
    Cell Struct Funct; 1986 Jun; 11(2):115-24. PubMed ID: 3089629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell cycle kinetics of aerated, hypoxic and re-aerated cells in vitro using flow cytometric determination of cellular DNA and incorporated bromodeoxyuridine.
    Shrieve DC; Begg AC
    Cell Tissue Kinet; 1985 Nov; 18(6):641-51. PubMed ID: 4064107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of a bromodeoxyuridine-Hoechst/ethidium bromide technique for the analysis of radiation-induced cell cycle delays in asynchronous cell populations.
    Gilligan D; Mort C; McMillan TJ; Peacock JH; Titley J; Ormerod MG
    Int J Radiat Biol; 1996 Feb; 69(2):251-7. PubMed ID: 8609462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronized human diploid fibroblasts: progression capabilities of a subpopulation that fails to keep pace with the predominant, rapidly dividing cohort of cells.
    Tobey RA; Oishi N; Crissman HA
    J Cell Physiol; 1989 May; 139(2):432-40. PubMed ID: 2523893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow cytometric correlation between BrdU/Hoechst quench effect and base pair composition in mammalian cell nuclei.
    Kubbies M; Friedl R
    Histochemistry; 1985; 83(2):133-7. PubMed ID: 2412990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new method to discriminate G1, S, G2, M, and G1 postmitotic cells.
    Giaretti W; Nüsse M; Bruno S; Di Vinci A; Geido E
    Exp Cell Res; 1989 May; 182(1):290-5. PubMed ID: 2714405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of bromodeoxyuridine-labeled cells by differential fluorescence analysis of DNA fluorochromes.
    Crissman HA; Steinkamp JA
    Methods Cell Biol; 1990; 33():199-206. PubMed ID: 1707483
    [No Abstract]   [Full Text] [Related]  

  • 15. Flow cytometry after bromodeoxyuridine labeling to measure S and G2+M phase durations plus doubling times in vitro and in vivo.
    Terry NH; White RA
    Nat Protoc; 2006; 1(2):859-69. PubMed ID: 17406318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hoechst fluorescence intensity can be used to separate viable bromodeoxyuridine-labeled cells from viable non-bromodeoxyuridine-labeled cells.
    Mozdziak PE; Pulvermacher PM; Schultz E; Schell K
    Cytometry; 2000 Oct; 41(2):89-95. PubMed ID: 11002263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of the effect of 5-bromodeoxyuridine substitution on 33258 Hoechst- and DAPI-fluorescence of isolated chromosomes by bivariate flow karyotyping.
    Buys CH; Mesa J; van der Veen AY; Aten JA
    Histochemistry; 1986; 84(4-6):462-70. PubMed ID: 2424867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative method for evaluating bivariate flow cytometric data obtained using monoclonal antibodies to bromodeoxyuridine.
    White RA; Terry NH
    Cytometry; 1992; 13(5):490-5. PubMed ID: 1633728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow cytometric analysis of bromodeoxyuridine-induced micronuclei.
    Weller EM; Dietrich I; Viaggi S; Beisker W; Nüsse M
    Mutagenesis; 1993 Sep; 8(5):437-44. PubMed ID: 8231825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BrdU-Hoechst flow cytometry: a unique tool for quantitative cell cycle analysis.
    Rabinovitch PS; Kubbies M; Chen YC; Schindler D; Hoehn H
    Exp Cell Res; 1988 Feb; 174(2):309-18. PubMed ID: 2448151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.