These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 29605728)

  • 1. The L83L ORF of African swine fever virus strain Georgia encodes for a non-essential gene that interacts with the host protein IL-1β.
    Borca MV; O'Donnell V; Holinka LG; Ramírez-Medina E; Clark BA; Vuono EA; Berggren K; Alfano M; Carey LB; Richt JA; Risatti GR; Gladue DP
    Virus Res; 2018 Apr; 249():116-123. PubMed ID: 29605728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The MGF360-16R ORF of African Swine Fever Virus Strain Georgia Encodes for a Nonessential Gene That Interacts with Host Proteins SERTAD3 and SDCBP.
    Ramírez-Medina E; Vuono EA; Velazquez-Salinas L; Silva E; Rai A; Pruitt S; Berggren KA; Zhu J; Borca MV; Gladue DP
    Viruses; 2020 Jan; 12(1):. PubMed ID: 31947814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Ep152R ORF of African swine fever virus strain Georgia encodes for an essential gene that interacts with host protein BAG6.
    Borca MV; O'Donnell V; Holinka LG; Rai DK; Sanford B; Alfano M; Carlson J; Azzinaro PA; Alonso C; Gladue DP
    Virus Res; 2016 Sep; 223():181-9. PubMed ID: 27497620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus.
    O'Donnell V; Holinka LG; Gladue DP; Sanford B; Krug PW; Lu X; Arzt J; Reese B; Carrillo C; Risatti GR; Borca MV
    J Virol; 2015 Jun; 89(11):6048-56. PubMed ID: 25810553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. African swine fever virus Georgia isolate harboring deletions of 9GL and MGF360/505 genes is highly attenuated in swine but does not confer protection against parental virus challenge.
    O'Donnell V; Holinka LG; Sanford B; Krug PW; Carlson J; Pacheco JM; Reese B; Risatti GR; Gladue DP; Borca MV
    Virus Res; 2016 Aug; 221():8-14. PubMed ID: 27182007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The C962R ORF of African Swine Fever Strain Georgia Is Non-Essential and Not Required for Virulence in Swine.
    Ramirez-Medina E; Vuono EA; Rai A; Pruitt S; Silva E; Velazquez-Salinas L; Zhu J; Borca MV; Gladue DP
    Viruses; 2020 Jun; 12(6):. PubMed ID: 32585808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. African Swine Fever Virus Georgia 2007 with a Deletion of Virulence-Associated Gene 9GL (B119L), when Administered at Low Doses, Leads to Virus Attenuation in Swine and Induces an Effective Protection against Homologous Challenge.
    O'Donnell V; Holinka LG; Krug PW; Gladue DP; Carlson J; Sanford B; Alfano M; Kramer E; Lu Z; Arzt J; Reese B; Carrillo C; Risatti GR; Borca MV
    J Virol; 2015 Aug; 89(16):8556-66. PubMed ID: 26063424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation in Swine of a Recombinant Georgia 2010 African Swine Fever Virus Lacking the I8L Gene.
    Vuono E; Ramirez-Medina E; Pruitt S; Rai A; Silva E; Espinoza N; Zhu J; Velazquez-Salinas L; Gladue DP; Borca MV
    Viruses; 2020 Dec; 13(1):. PubMed ID: 33383814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Highly Effective African Swine Fever Virus Vaccine by Deletion of the I177L Gene Results in Sterile Immunity against the Current Epidemic Eurasia Strain.
    Borca MV; Ramirez-Medina E; Silva E; Vuono E; Rai A; Pruitt S; Holinka LG; Velazquez-Salinas L; Zhu J; Gladue DP
    J Virol; 2020 Mar; 94(7):. PubMed ID: 31969432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and In Vivo Evaluation of a MGF110-1L Deletion Mutant in African Swine Fever Strain Georgia.
    Ramirez-Medina E; Vuono E; Pruitt S; Rai A; Silva E; Espinoza N; Zhu J; Velazquez-Salinas L; Borca MV; Gladue DP
    Viruses; 2021 Feb; 13(2):. PubMed ID: 33673255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of E184L, a Putative DIVA Target from the Pandemic Strain of African Swine Fever Virus, Produces a Reduction in Virulence and Protection against Virulent Challenge.
    Ramirez-Medina E; Vuono E; Rai A; Pruitt S; Espinoza N; Velazquez-Salinas L; Pina-Pedrero S; Zhu J; Rodriguez F; Borca MV; Gladue DP
    J Virol; 2022 Jan; 96(1):e0141921. PubMed ID: 34668772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of the A137R Gene from the Pandemic Strain of African Swine Fever Virus Attenuates the Strain and Offers Protection against the Virulent Pandemic Virus.
    Gladue DP; Ramirez-Medina E; Vuono E; Silva E; Rai A; Pruitt S; Espinoza N; Velazquez-Salinas L; Borca MV
    J Virol; 2021 Oct; 95(21):e0113921. PubMed ID: 34406865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous Deletion of the 9GL and UK Genes from the African Swine Fever Virus Georgia 2007 Isolate Offers Increased Safety and Protection against Homologous Challenge.
    O'Donnell V; Risatti GR; Holinka LG; Krug PW; Carlson J; Velazquez-Salinas L; Azzinaro PA; Gladue DP; Borca MV
    J Virol; 2017 Jan; 91(1):. PubMed ID: 27795430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. African Swine Fever Virus L83L Negatively Regulates the cGAS-STING-Mediated IFN-I Pathway by Recruiting Tollip To Promote STING Autophagic Degradation.
    Cheng M; Kanyema MM; Sun Y; Zhao W; Lu Y; Wang J; Li X; Shi C; Wang J; Wang N; Yang W; Jiang Y; Huang H; Yang G; Zeng Y; Wang C; Cao X
    J Virol; 2023 Feb; 97(2):e0192322. PubMed ID: 36779759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X69R Is a Non-Essential Gene That, When Deleted from African Swine Fever, Does Not Affect Virulence in Swine.
    Ramirez-Medina E; Vuono E; Pruitt S; Rai A; Silva E; Zhu J; Velazquez-Salinas L; Gladue DP; Borca MV
    Viruses; 2020 Aug; 12(9):. PubMed ID: 32825617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus.
    Sanford B; Holinka LG; O'Donnell V; Krug PW; Carlson J; Alfano M; Carrillo C; Wu P; Lowe A; Risatti GR; Gladue DP; Borca MV
    Virus Res; 2016 Feb; 213():165-171. PubMed ID: 26656424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome Profiling Reveals Features of Immune Response and Metabolism of Acutely Infected, Dead and Asymptomatic Infection of African Swine Fever Virus in Pigs.
    Sun H; Niu Q; Yang J; Zhao Y; Tian Z; Fan J; Zhang Z; Wang Y; Geng S; Zhang Y; Guan G; Williams DT; Luo J; Yin H; Liu Z
    Front Immunol; 2021; 12():808545. PubMed ID: 34975923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of an ASFV RNA Helicase Gene A859L for Virus Replication and Swine Virulence.
    Ramirez-Medina E; Vuono EA; Pruitt S; Rai A; Espinoza N; Velazquez-Salinas L; Gladue DP; Borca MV
    Viruses; 2021 Dec; 14(1):. PubMed ID: 35062213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BA71ΔCD2: a New Recombinant Live Attenuated African Swine Fever Virus with Cross-Protective Capabilities.
    Monteagudo PL; Lacasta A; López E; Bosch L; Collado J; Pina-Pedrero S; Correa-Fiz F; Accensi F; Navas MJ; Vidal E; Bustos MJ; Rodríguez JM; Gallei A; Nikolin V; Salas ML; Rodríguez F
    J Virol; 2017 Nov; 91(21):. PubMed ID: 28814514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The progressive adaptation of a georgian isolate of African swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome.
    Krug PW; Holinka LG; O'Donnell V; Reese B; Sanford B; Fernandez-Sainz I; Gladue DP; Arzt J; Rodriguez L; Risatti GR; Borca MV
    J Virol; 2015 Feb; 89(4):2324-32. PubMed ID: 25505073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.