BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 2960589)

  • 21. Phage HK022 Nun protein arrests transcription on phage lambda DNA in vitro and competes with the phage lambda N antitermination protein.
    Hung SC; Gottesman ME
    J Mol Biol; 1995 Mar; 247(3):428-42. PubMed ID: 7714899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the cloned terminators tR1, tL3 and tI and the nut R antitermination site of coliphage lambda.
    Luk KC; Szybalski W
    Gene; 1982 Dec; 20(2):127-34. PubMed ID: 6299882
    [No Abstract]   [Full Text] [Related]  

  • 23. Purified lambda regulatory protein cII positively activates promoters for lysogenic development.
    Simatake H; Rosenberg M
    Nature; 1981 Jul; 292(5819):128-32. PubMed ID: 6264321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics of RNA polymerase initiation and pausing at the lambda late gene promoter in vivo.
    Kainz M; Roberts JW
    J Mol Biol; 1995 Dec; 254(5):808-14. PubMed ID: 7500352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antitermination by bacteriophage lambda Q protein.
    Roberts JW; Yarnell W; Bartlett E; Guo J; Marr M; Ko DC; Sun H; Roberts CW
    Cold Spring Harb Symp Quant Biol; 1998; 63():319-25. PubMed ID: 10384296
    [No Abstract]   [Full Text] [Related]  

  • 26. Identification of functional regions of the Nun transcription termination protein of phage HK022 and the N antitermination protein of phage lambda using hybrid nun-N genes.
    Henthorn KS; Friedman DI
    J Mol Biol; 1996 Mar; 257(1):9-20. PubMed ID: 8632463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release.
    Neely MN; Friedman DI
    Mol Microbiol; 1998 Jun; 28(6):1255-67. PubMed ID: 9680214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence that the promoter can influence assembly of antitermination complexes at downstream RNA sites.
    Zhou Y; Shi T; Mozola MA; Olson ER; Henthorn K; Brown S; Gussin GN; Friedman DI
    J Bacteriol; 2006 Mar; 188(6):2222-32. PubMed ID: 16513752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcription-dependent competition for a host factor: the function and optimal sequence of the phage lambda boxA transcription antitermination signal.
    Friedman DI; Olson ER; Johnson LL; Alessi D; Craven MG
    Genes Dev; 1990 Dec; 4(12A):2210-22. PubMed ID: 2148536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An analysis of the role of host factors in transcription antitermination in vitro by the Q protein of coliphage lambda.
    Barik S; Das A
    Mol Gen Genet; 1990 Jun; 222(1):152-6. PubMed ID: 2146485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CII-dependent activation of the pRE promoter of coliphage lambda fused to the Escherichia coli galK gene.
    Fien K; Turck A; Kang I; Kielty S; Wulff DL; McKenney K; Rosenberg M
    Gene; 1984 Dec; 32(1-2):141-50. PubMed ID: 6241579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The nut site of bacteriophage lambda is made of RNA and is bound by transcription antitermination factors on the surface of RNA polymerase.
    Nodwell JR; Greenblatt J
    Genes Dev; 1991 Nov; 5(11):2141-51. PubMed ID: 1834523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Escherichia coli mutations that block transcription termination by phage HK022 Nun protein.
    Robledo R; Atkinson BL; Gottesman ME
    J Mol Biol; 1991 Aug; 220(3):613-9. PubMed ID: 1831236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibitory effect of high-level transcription of the bacteriophage lambda nutL region on transcription of rRNA in Escherichia coli.
    Sharrock RA; Gourse RL; Nomura M
    J Bacteriol; 1985 Aug; 163(2):704-8. PubMed ID: 3160688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. OOP RNA, produced from multicopy plasmids, inhibits lambda cII gene expression through an RNase III-dependent mechanism.
    Krinke L; Wulff DL
    Genes Dev; 1987 Nov; 1(9):1005-13. PubMed ID: 2962901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Escherichia coli nusG function on lambda N-mediated transcription antitermination.
    Sullivan SL; Ward DF; Gottesman ME
    J Bacteriol; 1992 Feb; 174(4):1339-44. PubMed ID: 1531224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacteriophage lambda P gene shows host killing which is not dependent on lambda DNA replication.
    Maiti S; Mukhopadhyay M; Mandal NC
    Virology; 1991 May; 182(1):324-35. PubMed ID: 1827224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptional antitermination.
    Greenblatt J; Nodwell JR; Mason SW
    Nature; 1993 Jul; 364(6436):401-6. PubMed ID: 8332211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacteriophage lambda N-dependent transcription antitermination. Competition for an RNA site may regulate antitermination.
    Patterson TA; Zhang Z; Baker T; Johnson LL; Friedman DI; Court DL
    J Mol Biol; 1994 Feb; 236(1):217-28. PubMed ID: 8107107
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutations of the phage lambda nutL region that prevent the action of Nun, a site-specific transcription termination factor.
    Baron J; Weisberg RA
    J Bacteriol; 1992 Mar; 174(6):1983-9. PubMed ID: 1532174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.