These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29605932)

  • 21. Addressing recent docking challenges: A hybrid strategy to integrate template-based and free protein-protein docking.
    Yan Y; Wen Z; Wang X; Huang SY
    Proteins; 2017 Mar; 85(3):497-512. PubMed ID: 28026062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ¹H, ¹³C and ¹⁵N resonance assignments of Rpn9, a regulatory subunit of 26S proteasome from Saccharomyces cerevisiae.
    Wu Y; Hu Y; Jin C
    Biomol NMR Assign; 2014 Oct; 8(2):307-11. PubMed ID: 23832675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis and engineering of substrate shuttling by the acyl carrier protein (ACP) in fatty acid synthases (FASs).
    Rossini E; Gajewski J; Klaus M; Hummer G; Grininger M
    Chem Commun (Camb); 2018 Oct; 54(82):11606-11609. PubMed ID: 30264077
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assembly of proteasome subunits into non-canonical complexes in vivo.
    Hammack LJ; Kusmierczyk AR
    Biochem Biophys Res Commun; 2017 Jan; 482(1):164-169. PubMed ID: 27833017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.
    Wei Q; La D; Kihara D
    Methods Mol Biol; 2017; 1529():279-289. PubMed ID: 27914057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolvability of yeast protein-protein interaction interfaces.
    Talavera D; Williams SG; Norris MG; Robertson DL; Lovell SC
    J Mol Biol; 2012 Jun; 419(5):387-96. PubMed ID: 22472422
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteasome assembly from 15S precursors involves major conformational changes and recycling of the Pba1-Pba2 chaperone.
    Kock M; Nunes MM; Hemann M; Kube S; Dohmen RJ; Herzog F; Ramos PC; Wendler P
    Nat Commun; 2015 Jan; 6():6123. PubMed ID: 25609009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DOCKGROUND system of databases for protein recognition studies: unbound structures for docking.
    Gao Y; Douguet D; Tovchigrechko A; Vakser IA
    Proteins; 2007 Dec; 69(4):845-51. PubMed ID: 17803215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flexible Protein-Protein Docking with SwarmDock.
    Moal IH; Chaleil RAG; Bates PA
    Methods Mol Biol; 2018; 1764():413-428. PubMed ID: 29605931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a conserved 8 aa insert in the PIP5K protein in the Saccharomycetaceae family of fungi and the molecular dynamics simulations and structural analysis to investigate its potential functional role.
    Khadka B; Gupta RS
    Proteins; 2017 Aug; 85(8):1454-1467. PubMed ID: 28407364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CLUB-MARTINI: Selecting Favourable Interactions amongst Available Candidates, a Coarse-Grained Simulation Approach to Scoring Docking Decoys.
    Hou Q; Lensink MF; Heringa J; Feenstra KA
    PLoS One; 2016; 11(5):e0155251. PubMed ID: 27166787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleotide-dependent switch in proteasome assembly mediated by the Nas6 chaperone.
    Li F; Tian G; Langager D; Sokolova V; Finley D; Park S
    Proc Natl Acad Sci U S A; 2017 Feb; 114(7):1548-1553. PubMed ID: 28137839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intuitive, but not simple: including explicit water molecules in protein-protein docking simulations improves model quality.
    Parikh HI; Kellogg GE
    Proteins; 2014 Jun; 82(6):916-32. PubMed ID: 24214407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring the potential of global protein-protein docking: an overview and critical assessment of current programs for automatic ab initio docking.
    Huang SY
    Drug Discov Today; 2015 Aug; 20(8):969-77. PubMed ID: 25801181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein-protein interactions leave evolutionary footprints: High molecular coevolution at the core of interfaces.
    Teppa E; Zea DJ; Marino-Buslje C
    Protein Sci; 2017 Dec; 26(12):2438-2444. PubMed ID: 28980349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model.
    An JY; Meng FR; You ZH; Chen X; Yan GY; Hu JP
    Protein Sci; 2016 Oct; 25(10):1825-33. PubMed ID: 27452983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DockStar: a novel ILP-based integrative method for structural modeling of multimolecular protein complexes.
    Amir N; Cohen D; Wolfson HJ
    Bioinformatics; 2015 Sep; 31(17):2801-7. PubMed ID: 25913207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Introducing a Clustering Step in a Consensus Approach for the Scoring of Protein-Protein Docking Models.
    Chermak E; De Donato R; Lensink MF; Petta A; Serra L; Scarano V; Cavallo L; Oliva R
    PLoS One; 2016; 11(11):e0166460. PubMed ID: 27846259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of the Blm10-20 S proteasome complex by cryo-electron microscopy. Insights into the mechanism of activation of mature yeast proteasomes.
    Iwanczyk J; Sadre-Bazzaz K; Ferrell K; Kondrashkina E; Formosa T; Hill CP; Ortega J
    J Mol Biol; 2006 Oct; 363(3):648-59. PubMed ID: 16952374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GalaxyTongDock: Symmetric and asymmetric ab initio protein-protein docking web server with improved energy parameters.
    Park T; Baek M; Lee H; Seok C
    J Comput Chem; 2019 Oct; 40(27):2413-2417. PubMed ID: 31173387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.