These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29605932)

  • 41. Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes.
    Yashiroda H; Mizushima T; Okamoto K; Kameyama T; Hayashi H; Kishimoto T; Niwa S; Kasahara M; Kurimoto E; Sakata E; Takagi K; Suzuki A; Hirano Y; Murata S; Kato K; Yamane T; Tanaka K
    Nat Struct Mol Biol; 2008 Mar; 15(3):228-36. PubMed ID: 18278057
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure of ubiquitylated-Rpn10 provides insight into its autoregulation mechanism.
    Keren-Kaplan T; Zeev Peters L; Levin-Kravets O; Attali I; Kleifeld O; Shohat N; Artzi S; Zucker O; Pilzer I; Reis N; Glickman MH; Ben-Aroya S; Prag G
    Nat Commun; 2016 Oct; 7():12960. PubMed ID: 27698474
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site.
    Kurcinski M; Jamroz M; Blaszczyk M; Kolinski A; Kmiecik S
    Nucleic Acids Res; 2015 Jul; 43(W1):W419-24. PubMed ID: 25943545
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening.
    Sadre-Bazzaz K; Whitby FG; Robinson H; Formosa T; Hill CP
    Mol Cell; 2010 Mar; 37(5):728-35. PubMed ID: 20227375
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural Insights into Yeast Telomerase Recruitment to Telomeres.
    Chen H; Xue J; Churikov D; Hass EP; Shi S; Lemon LD; Luciano P; Bertuch AA; Zappulla DC; Géli V; Wu J; Lei M
    Cell; 2018 Jan; 172(1-2):331-343.e13. PubMed ID: 29290466
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Correlation of disorder between S. cerevisiae interacting proteins.
    Rue-Albrecht K; Shields DC; Khaldi N
    Mol Biosyst; 2012 Jan; 8(1):417-25. PubMed ID: 22108582
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scoring docking models with evolutionary information.
    Tress M; de Juan D; Graña O; Gómez MJ; Gómez-Puertas P; González JM; López G; Valencia A
    Proteins; 2005 Aug; 60(2):275-80. PubMed ID: 15981273
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Relating three-dimensional structures to protein networks provides evolutionary insights.
    Kim PM; Lu LJ; Xia Y; Gerstein MB
    Science; 2006 Dec; 314(5807):1938-41. PubMed ID: 17185604
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Accurate prediction of interfacial residues in two-domain proteins using evolutionary information: implications for three-dimensional modeling.
    Bhaskara RM; Padhi A; Srinivasan N
    Proteins; 2014 Jul; 82(7):1219-34. PubMed ID: 24375512
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein-protein docking: from interaction to interactome.
    Vakser IA
    Biophys J; 2014 Oct; 107(8):1785-1793. PubMed ID: 25418159
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural characterization of the interaction of Ubp6 with the 26S proteasome.
    Aufderheide A; Beck F; Stengel F; Hartwig M; Schweitzer A; Pfeifer G; Goldberg AL; Sakata E; Baumeister W; Förster F
    Proc Natl Acad Sci U S A; 2015 Jul; 112(28):8626-31. PubMed ID: 26130806
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dissection of the carboxyl-terminal domain of the proteasomal subunit Rpn11 in maintenance of mitochondrial structure and function.
    Rinaldi T; Hofmann L; Gambadoro A; Cossard R; Livnat-Levanon N; Glickman MH; Frontali L; Delahodde A
    Mol Biol Cell; 2008 Mar; 19(3):1022-31. PubMed ID: 18172023
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NPDock: a web server for protein-nucleic acid docking.
    Tuszynska I; Magnus M; Jonak K; Dawson W; Bujnicki JM
    Nucleic Acids Res; 2015 Jul; 43(W1):W425-30. PubMed ID: 25977296
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predicting protein-protein interactions from protein domains using a set cover approach.
    Huang C; Morcos F; Kanaan SP; Wuchty S; Chen DZ; Izaguirre JA
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(1):78-87. PubMed ID: 17277415
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Scoring optimisation of unbound protein-protein docking including protein binding site predictions.
    Schneider S; Zacharias M
    J Mol Recognit; 2012 Jan; 25(1):15-23. PubMed ID: 22213447
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conserved network motifs allow protein-protein interaction prediction.
    Albert I; Albert R
    Bioinformatics; 2004 Dec; 20(18):3346-52. PubMed ID: 15247093
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Information-driven modeling of protein-peptide complexes.
    Trellet M; Melquiond AS; Bonvin AM
    Methods Mol Biol; 2015; 1268():221-39. PubMed ID: 25555727
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Crystal structure of a PFU-PUL domain pair of Saccharomyces cerevisiae Doa1/Ufd3.
    Nishimasu R; Komori H; Higuchi Y; Nishimasu H; Hiroaki H
    Kobe J Med Sci; 2010 Oct; 56(3):E125-39. PubMed ID: 21063153
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D-partner: a web server to infer interacting partners and binding models.
    Chen YC; Lo YS; Hsu WC; Yang JM
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W561-7. PubMed ID: 17517763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.