BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 29606099)

  • 1. Unexpected conservation of the RNA splicing apparatus in the highly streamlined genome of Galdieria sulphuraria.
    Qiu H; Rossoni AW; Weber APM; Yoon HS; Bhattacharya D
    BMC Evol Biol; 2018 Apr; 18(1):41. PubMed ID: 29606099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of pre-mRNA splicing and its machinery revealed by reduced extremophilic red algae.
    Wong DK; Grisdale CJ; Slat VA; Rader SD; Fast NM
    J Eukaryot Microbiol; 2023 Jan; 70(1):e12927. PubMed ID: 35662328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae.
    Barbier G; Oesterhelt C; Larson MD; Halgren RG; Wilkerson C; Garavito RM; Benning C; Weber AP
    Plant Physiol; 2005 Feb; 137(2):460-74. PubMed ID: 15710685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of conservation of spliceosomal intron structures and spliceosome divergence in representatives of the diplomonad and parabasalid lineages.
    Hudson AJ; McWatters DC; Bowser BA; Moore AN; Larue GE; Roy SW; Russell AG
    BMC Evol Biol; 2019 Aug; 19(1):162. PubMed ID: 31375061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Pre-mRNA Splicing and Spliceosomal Machinery in Porphyridium purpureum and Evolutionary Implications for Red Algae.
    Wong DK; Stark MS; Rader SD; Fast NM
    J Eukaryot Microbiol; 2021 May; 68(3):e12844. PubMed ID: 33569840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intron-exon structure and gene copy number of a gene encoding for a membrane-intrinsic light-harvesting polypeptide of the red alga Galdieria sulphuraria.
    Marquardt J; Wans S; Rhiel E; Randolf A; Krumbein WE
    Gene; 2000 Sep; 255(2):257-65. PubMed ID: 11024285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extreme features of the Galdieria sulphuraria organellar genomes: a consequence of polyextremophily?
    Jain K; Krause K; Grewe F; Nelson GF; Weber AP; Christensen AC; Mower JP
    Genome Biol Evol; 2014 Dec; 7(1):367-80. PubMed ID: 25552531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spliceosomal intron in Giardia lamblia.
    Nixon JE; Wang A; Morrison HG; McArthur AG; Sogin ML; Loftus BJ; Samuelson J
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3701-5. PubMed ID: 11854456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spliceosomal introns in the deep-branching eukaryote Trichomonas vaginalis.
    Vanácová S; Yan W; Carlton JM; Johnson PJ
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4430-5. PubMed ID: 15764705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic analysis of the Photosystem I subunits from the red alga, Galdieria sulphuraria.
    Vanselow C; Weber AP; Krause K; Fromme P
    Biochim Biophys Acta; 2009 Jan; 1787(1):46-59. PubMed ID: 19007746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns.
    Bon E; Casaregola S; Blandin G; Llorente B; Neuvéglise C; Munsterkotter M; Guldener U; Mewes HW; Van Helden J; Dujon B; Gaillardin C
    Nucleic Acids Res; 2003 Feb; 31(4):1121-35. PubMed ID: 12582231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Splicing diversity revealed by reduced spliceosomes in C. merolae and other organisms.
    Hudson AJ; Stark MR; Fast NM; Russell AG; Rader SD
    RNA Biol; 2015; 12(11):1-8. PubMed ID: 26400738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extremophilic red algae as models for understanding adaptation to hostile environments and the evolution of eukaryotic life on the early earth.
    Van Etten J; Cho CH; Yoon HS; Bhattacharya D
    Semin Cell Dev Biol; 2023 Jan; 134():4-13. PubMed ID: 35339358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actin gene family dynamics in cryptomonads and red algae.
    Tanifuji G; Archibald JM
    J Mol Evol; 2010 Sep; 71(3):169-79. PubMed ID: 20700735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypothesis: Gene-rich plastid genomes in red algae may be an outcome of nuclear genome reduction.
    Qiu H; Lee JM; Yoon HS; Bhattacharya D
    J Phycol; 2017 Jun; 53(3):715-719. PubMed ID: 28095611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two types of ftsZ genes isolated from the unicellular primitive red alga Galdieria sulphuraria.
    Takahara M; Takahashi H; Matsunaga S; Sakai A; Kawano S; Kuroiwa T
    Plant Cell Physiol; 1999 Aug; 40(8):784-91. PubMed ID: 10555302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote.
    Schönknecht G; Chen WH; Ternes CM; Barbier GG; Shrestha RP; Stanke M; Bräutigam A; Baker BJ; Banfield JF; Garavito RM; Carr K; Wilkerson C; Rensing SA; Gagneul D; Dickenson NE; Oesterhelt C; Lercher MJ; Weber AP
    Science; 2013 Mar; 339(6124):1207-10. PubMed ID: 23471408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dramatically reduced spliceosome in Cyanidioschyzon merolae.
    Stark MR; Dunn EA; Dunn WS; Grisdale CJ; Daniele AR; Halstead MR; Fast NM; Rader SD
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):E1191-200. PubMed ID: 25733880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spliceosomal introns in a deep-branching eukaryote: the splice of life.
    Johnson PJ
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3359-61. PubMed ID: 11904397
    [No Abstract]   [Full Text] [Related]  

  • 20. [Mechanisms of spliceosomal introns loss and gain].
    Ignatenko A; Gumińska N; Milanowski R
    Postepy Biochem; 2019 Dec; 65(4):289-298. PubMed ID: 31945283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.