These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
388 related articles for article (PubMed ID: 29606371)
1. Characterization of small (<4cm) solid renal masses by computed tomography and magnetic resonance imaging: Current evidence and further development. Schieda N; Lim RS; McInnes MDF; Thomassin I; Renard-Penna R; Tavolaro S; Cornelis FH Diagn Interv Imaging; 2018; 99(7-8):443-455. PubMed ID: 29606371 [TBL] [Abstract][Full Text] [Related]
2. Small (< 4 cm) Renal Tumors With Predominantly Low Signal Intensity on T2-Weighted Images: Differentiation of Minimal-Fat Angiomyolipoma From Renal Cell Carcinoma. Park JJ; Kim CK AJR Am J Roentgenol; 2017 Jan; 208(1):124-130. PubMed ID: 27824487 [TBL] [Abstract][Full Text] [Related]
3. Tumor grade estımatıon of clear cell and papıllary renal cell carcınomas usıng contrast-enhanced MDCT and FSE T2 weıghted MR ımagıng: radıology-pathology correlatıon. Halefoglu AM; Ozagari AA Radiol Med; 2021 Sep; 126(9):1139-1148. PubMed ID: 34100169 [TBL] [Abstract][Full Text] [Related]
4. Subtype Differentiation of Small (≤ 4 cm) Solid Renal Mass Using Volumetric Histogram Analysis of DWI at 3-T MRI. Li A; Xing W; Li H; Hu Y; Hu D; Li Z; Kamel IR AJR Am J Roentgenol; 2018 Sep; 211(3):614-623. PubMed ID: 29812980 [TBL] [Abstract][Full Text] [Related]
5. Intensity ratio curve analysis of small renal masses on T2-weighted magnetic resonance imaging: Differentiation of fat-poor angiomyolipoma from renal cell carcinoma. Moriyama S; Yoshida S; Tanaka H; Tanaka H; Yokoyama M; Ishioka J; Matsuoka Y; Saito K; Kihara K; Fujii Y Int J Urol; 2018 Jun; 25(6):554-560. PubMed ID: 29577440 [TBL] [Abstract][Full Text] [Related]
6. Stepwise algorithm using computed tomography and magnetic resonance imaging for diagnosis of fat-poor angiomyolipoma in small renal masses: Development and external validation. Tanaka H; Fujii Y; Tanaka H; Ishioka J; Matsuoka Y; Saito K; Uehara S; Numao N; Yuasa T; Yamamoto S; Masuda H; Yonese J; Kihara K Int J Urol; 2017 Jul; 24(7):511-517. PubMed ID: 28600877 [TBL] [Abstract][Full Text] [Related]
7. MRI evaluation of small (<4cm) solid renal masses: multivariate modeling improves diagnostic accuracy for angiomyolipoma without visible fat compared to univariate analysis. Schieda N; Dilauro M; Moosavi B; Hodgdon T; Cron GO; McInnes MD; Flood TA Eur Radiol; 2016 Jul; 26(7):2242-51. PubMed ID: 26486936 [TBL] [Abstract][Full Text] [Related]
8. Differentiation of Clear Cell Renal Cell Carcinoma From Other Subtypes and Fat-Poor Angiomyolipoma by Use of Quantitative Enhancement Measurement During Three-Phase MDCT. Kim SH; Kim CS; Kim MJ; Cho JY; Cho SH AJR Am J Roentgenol; 2016 Jan; 206(1):W21-8. PubMed ID: 26700359 [TBL] [Abstract][Full Text] [Related]
9. Are there useful CT features to differentiate renal cell carcinoma from lipid-poor renal angiomyolipoma? Yang CW; Shen SH; Chang YH; Chung HJ; Wang JH; Lin AT; Chen KK AJR Am J Roentgenol; 2013 Nov; 201(5):1017-28. PubMed ID: 24147472 [TBL] [Abstract][Full Text] [Related]
10. Performance of Relative Enhancement on Multiphasic MRI for the Differentiation of Clear Cell Renal Cell Carcinoma (RCC) From Papillary and Chromophobe RCC Subtypes and Oncocytoma. Young JR; Coy H; Kim HJ; Douek M; Lo P; Pantuck AJ; Raman SS AJR Am J Roentgenol; 2017 Apr; 208(4):812-819. PubMed ID: 28125273 [TBL] [Abstract][Full Text] [Related]
11. Unenhanced CT and MRI Parameters That Can Be Used to Reliably Predict Fat-Invisible Angiomyolipoma. Jeong CJ; Park BK; Park JJ; Kim CK AJR Am J Roentgenol; 2016 Feb; 206(2):340-7. PubMed ID: 26797361 [TBL] [Abstract][Full Text] [Related]
12. Sonographic Features of Small (< 4 cm) Renal Tumors With Low Signal Intensity on T2-Weighted MR Images: Differentiating Minimal-Fat Angiomyolipoma From Renal Cell Carcinoma. Park KJ; Kim MH; Kim JK; Cho KS AJR Am J Roentgenol; 2018 Sep; 211(3):605-613. PubMed ID: 30040467 [TBL] [Abstract][Full Text] [Related]
15. Renal cell carcinoma: applicability of the apparent coefficient of the diffusion-weighted estimated by MRI for improving their differential diagnosis, histologic subtyping, and differentiation grade. Mytsyk Y; Dutka I; Borys Y; Komnatska I; Shatynska-Mytsyk I; Farooqi AA; Gazdikova K; Caprnda M; Rodrigo L; Kruzliak P Int Urol Nephrol; 2017 Feb; 49(2):215-224. PubMed ID: 27853915 [TBL] [Abstract][Full Text] [Related]
16. Quantitative computer-aided diagnostic algorithm for automated detection of peak lesion attenuation in differentiating clear cell from papillary and chromophobe renal cell carcinoma, oncocytoma, and fat-poor angiomyolipoma on multiphasic multidetector computed tomography. Coy H; Young JR; Douek ML; Brown MS; Sayre J; Raman SS Abdom Radiol (NY); 2017 Jul; 42(7):1919-1928. PubMed ID: 28280876 [TBL] [Abstract][Full Text] [Related]
17. Usefulness of rapid kV-switching dual energy CT in renal tumor characterization. Çamlıdağ İ; Nural MS; Danacı M; Özden E Abdom Radiol (NY); 2019 May; 44(5):1841-1849. PubMed ID: 30637472 [TBL] [Abstract][Full Text] [Related]
18. Differentiation of papillary renal cell carcinoma subtypes on CT and MRI. Egbert ND; Caoili EM; Cohan RH; Davenport MS; Francis IR; Kunju LP; Ellis JH AJR Am J Roentgenol; 2013 Aug; 201(2):347-55. PubMed ID: 23883215 [TBL] [Abstract][Full Text] [Related]
19. Pretreatment differentiation of renal cell carcinoma subtypes by CT: the influence of different tumor enhancement measurement approaches. Zokalj I; Marotti M; Kolarić B Int Urol Nephrol; 2014 Jun; 46(6):1089-100. PubMed ID: 24381132 [TBL] [Abstract][Full Text] [Related]
20. The diagnostic utility of diffusion weighted MRI imaging and ADC ratio to distinguish benign from malignant renal masses: sorting the kittens from the tigers. de Silva S; Lockhart KR; Aslan P; Nash P; Hutton A; Malouf D; Lee D; Cozzi P; MacLean F; Thompson J BMC Urol; 2021 Apr; 21(1):67. PubMed ID: 33888122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]