BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 29606439)

  • 1. An approach for degradation of grape seed and skin proanthocyanidin polymers into oligomers by sulphurous acid.
    Luo L; Cui Y; Cheng J; Fang B; Wei Z; Sun B
    Food Chem; 2018 Aug; 256():203-211. PubMed ID: 29606439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A semisynthetic approach for the simultaneous reaction of grape seed polymeric procyanidins with catechin and epicatechin to obtain oligomeric procyanidins in large scale.
    Bai R; Cui Y; Luo L; Yuan D; Wei Z; Yu W; Sun B
    Food Chem; 2019 Apr; 278():609-616. PubMed ID: 30583419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A preliminary characterization of Aglianico (Vitis vinifera L. cv.) grape proanthocyanidins and evaluation of their reactivity towards salivary proteins.
    Rinaldi A; Jourdes M; Teissedre PL; Moio L
    Food Chem; 2014 Dec; 164():142-9. PubMed ID: 24996317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparative separation of grape skin polyphenols by high-speed counter-current chromatography.
    Luo L; Cui Y; Zhang S; Li L; Li Y; Zhou P; Sun B
    Food Chem; 2016 Dec; 212():712-21. PubMed ID: 27374588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Procyanidin content of grape seed and pomace, and total anthocyanin content of grape pomace as affected by extrusion processing.
    Khanal RC; Howard LR; Prior RL
    J Food Sci; 2009 Aug; 74(6):H174-82. PubMed ID: 19723202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparative high-speed counter-current chromatography separation of grape seed proanthocyanidins according to degree of polymerization.
    Zhang S; Li L; Cui Y; Luo L; Li Y; Zhou P; Sun B
    Food Chem; 2017 Mar; 219():399-407. PubMed ID: 27765243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparative HSCCC isolation of phloroglucinolysis products from grape seed polymeric proanthocyanidins as new powerful antioxidants.
    Zhang S; Cui Y; Li L; Li Y; Zhou P; Luo L; Sun B
    Food Chem; 2015 Dec; 188():422-9. PubMed ID: 26041213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet Sauvignon.
    Monagas M; Gómez-Cordovés C; Bartolomé B; Laureano O; Ricardo da Silva JM
    J Agric Food Chem; 2003 Oct; 51(22):6475-81. PubMed ID: 14558765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New approach for the synthesis and isolation of dimeric procyanidins.
    Köhler N; Wray V; Winterhalter P
    J Agric Food Chem; 2008 Jul; 56(13):5374-85. PubMed ID: 18540617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-tumor-promoting activity of a polyphenolic fraction isolated from grape seeds in the mouse skin two-stage initiation-promotion protocol and identification of procyanidin B5-3'-gallate as the most effective antioxidant constituent.
    Zhao J; Wang J; Chen Y; Agarwal R
    Carcinogenesis; 1999 Sep; 20(9):1737-45. PubMed ID: 10469619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing Nucleophilic Depolymerization of Proanthocyanidins in Grape Seeds to Dimeric Proanthocyanidin B1 or B2.
    Wen KS; Ruan X; Wang J; Yang L; Wei F; Zhao YX; Wang Q
    J Agric Food Chem; 2019 May; 67(21):5978-5988. PubMed ID: 31070025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A galloylated dimeric proanthocyanidin from grape seed exhibits dentin biomodification potential.
    Phansalkar RS; Nam JW; Chen SN; McAlpine JB; Napolitano JG; Leme A; Vidal CM; Aguiar T; Bedran-Russo AK; Pauli GF
    Fitoterapia; 2015 Mar; 101():169-78. PubMed ID: 25542682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Procyanidin B1 is detected in human serum after intake of proanthocyanidin-rich grape seed extract.
    Sano A; Yamakoshi J; Tokutake S; Tobe K; Kubota Y; Kikuchi M
    Biosci Biotechnol Biochem; 2003 May; 67(5):1140-3. PubMed ID: 12834296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crown Procyanidin Tetramer: A Procyanidin with an Unusual Cyclic Skeleton with a Potent Protective Effect against Amyloid-β-Induced Toxicity.
    Zeng L; Pons-Mercadé P; Richard T; Krisa S; Teissèdre PL; Jourdes M
    Molecules; 2019 May; 24(10):. PubMed ID: 31109031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of polymeric procyanidins (Tannins) from grape (Vitis vinifera) seeds by reverse phase high-performance liquid chromatography.
    Peng Z; Hayasaka Y; Iland PG; Sefton M; Høj P; Waters EJ
    J Agric Food Chem; 2001 Jan; 49(1):26-31. PubMed ID: 11170555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composition and cellular localization of tannins in grape seeds during maturation.
    Geny L; Saucier C; Bracco S; Daviaud F; Glories Y
    J Agric Food Chem; 2003 Dec; 51(27):8051-4. PubMed ID: 14690395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between Neuroprotective Effects and Structure of Procyanidins.
    Chen J; Chen Y; Zheng Y; Zhao J; Yu H; Zhu J
    Molecules; 2022 Apr; 27(7):. PubMed ID: 35408708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the oxidative degradation of proanthocyanidins under basic conditions.
    Jorgensen EM; Marin AB; Kennedy JA
    J Agric Food Chem; 2004 Apr; 52(8):2292-6. PubMed ID: 15080635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Qualitative analysis and HPLC isolation and identification of procyanidins from Vicia faba.
    Merghem R; Jay M; Brun N; Voirin B
    Phytochem Anal; 2004; 15(2):95-9. PubMed ID: 15116939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the NO scavenging activity of procyanidin in grape seed by use of the TMA-PTIO/NOC 7 ESR system.
    Yoshimura Y; Nakazawa H; Yamaguchi F
    J Agric Food Chem; 2003 Oct; 51(22):6409-12. PubMed ID: 14558755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.