These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29606475)

  • 41. Effect of defatting on acid hydrolysis rate of maize starch with different amylose contents.
    Wei B; Hu X; Zhang B; Li H; Xu X; Jin Z; Tian Y
    Int J Biol Macromol; 2013 Nov; 62():652-6. PubMed ID: 24125833
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of molecular and crystalline structures on in vitro digestibility of waxy rice starches.
    You SY; Lim ST; Lee JH; Chung HJ
    Carbohydr Polym; 2014 Nov; 112():729-35. PubMed ID: 25129802
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of a preferential action of α-amylase from B. licheniformis towards amorphous regions of waxy maize starch.
    Foresti ML; Williams Mdel P; Martínez-García R; Vázquez A
    Carbohydr Polym; 2014 Feb; 102():80-7. PubMed ID: 24507258
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural characteristics of slowly digestible starch and resistant starch isolated from heat-moisture treated waxy potato starch.
    Lee CJ; Moon TW
    Carbohydr Polym; 2015 Jul; 125():200-5. PubMed ID: 25857975
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of the degree of cooking on starch digestibility of rice - An in vitro study.
    Tamura M; Singh J; Kaur L; Ogawa Y
    Food Chem; 2016 Jan; 191():98-104. PubMed ID: 26258707
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physicochemical and morphological properties of resistant starch type 4 prepared under ultrasound and conventional conditions and their in-vitro and in-vivo digestibilities.
    Falsafi SR; Maghsoudlou Y; Aalami M; Jafari SM; Raeisi M
    Ultrason Sonochem; 2019 May; 53():110-119. PubMed ID: 30691996
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Effects of dynamic high-pressure microfluidization on the structure of waxy rice starch].
    Tu ZC; Zhu XM; Chen G; Wang H; Zhang B; Huang XQ; Li Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Mar; 30(3):834-7. PubMed ID: 20496721
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural and physicochemical properties of lotus seed starch nanoparticles prepared using ultrasonic-assisted enzymatic hydrolysis.
    Lin X; Sun S; Wang B; Zheng B; Guo Z
    Ultrason Sonochem; 2020 Nov; 68():105199. PubMed ID: 32512432
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Production of an in Vitro Low-Digestible Starch via Hydrothermal Treatment of Amylosucrase-Modified Normal and Waxy Rice Starches and Its Structural Properties.
    Kim JH; Kim HR; Choi SJ; Park CS; Moon TW
    J Agric Food Chem; 2016 Jun; 64(24):5045-52. PubMed ID: 27228544
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties.
    de la Hera E; Gomez M; Rosell CM
    Carbohydr Polym; 2013 Oct; 98(1):421-7. PubMed ID: 23987363
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Physicochemical property of starch-pectin conjugates with resistance to enzymatic activity.
    Zhang J; Chen L; Cui J; Xiao L; Wang Z
    J Sci Food Agric; 2014 Jun; 94(8):1505-12. PubMed ID: 24127206
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties.
    Wang X; Chen H; Luo Z; Fu X
    Carbohydr Polym; 2016 Mar; 138():192-200. PubMed ID: 26794752
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Encapsulation of rutin using quinoa and maize starch nanoparticles.
    Remanan MK; Zhu F
    Food Chem; 2021 Aug; 353():128534. PubMed ID: 33189475
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation and emulsification properties of dialdehyde starch nanoparticles.
    Chen Y; Hao Y; Ting K; Li Q; Gao Q
    Food Chem; 2019 Jul; 286():467-474. PubMed ID: 30827634
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transitional properties of starch colloid with particle size reduction from micro- to nanometer.
    Liu D; Wu Q; Chen H; Chang PR
    J Colloid Interface Sci; 2009 Nov; 339(1):117-24. PubMed ID: 19666174
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Production of resistant starch by extrusion cooking of acid-modified normal-maize starch.
    Hasjim J; Jane JL
    J Food Sci; 2009 Sep; 74(7):C556-62. PubMed ID: 19895460
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation, characterization and evaluation of capsaicin-loaded indica rice starch nanoparticles.
    Tao X; Zhan L; Huang Y; Li P; Liu B; Chen P
    Food Chem; 2022 Aug; 386():132692. PubMed ID: 35334322
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of homogenization-pressure-assisted enzymatic hydrolysis on the structural and physicochemical properties of lotus-seed starch nanoparticles.
    Wang B; Lin X; Zheng Y; Zeng M; Huang M; Guo Z
    Int J Biol Macromol; 2021 Jan; 167():1579-1586. PubMed ID: 33220375
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure and digestibility of debranched and repeatedly crystallized waxy rice starch.
    Zeng F; Chen F; Kong F; Gao Q; Aadil RM; Yu S
    Food Chem; 2015 Nov; 187():348-53. PubMed ID: 25977036
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparation of starch nanoparticles in a water-in-ionic liquid microemulsion system and their drug loading and releasing properties.
    Zhou G; Luo Z; Fu X
    J Agric Food Chem; 2014 Aug; 62(32):8214-20. PubMed ID: 25069988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.