These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29607030)

  • 1. Timing of precipitation in an arid environment: Effects on population performance of a large herbivore.
    Heffelfinger LJ; Stewart KM; Bush AP; Sedinger JS; Darby NW; Bleich VC
    Ecol Evol; 2018 Mar; 8(6):3354-3366. PubMed ID: 29607030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asynchronous vegetation phenology enhances winter body condition of a large mobile herbivore.
    Searle KR; Rice MB; Anderson CR; Bishop C; Hobbs NT
    Oecologia; 2015 Oct; 179(2):377-91. PubMed ID: 26009244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Productivity responses of desert vegetation to precipitation patterns across a rainfall gradient.
    Li F; Zhao W; Liu H
    J Plant Res; 2015 Mar; 128(2):283-94. PubMed ID: 25613044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil microbial community response to drought and precipitation variability in the Chihuahuan Desert.
    Clark JS; Campbell JH; Grizzle H; Acosta-Martìnez V; Zak JC
    Microb Ecol; 2009 Feb; 57(2):248-60. PubMed ID: 19067031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drought reshuffles plant phenology and reduces the foraging benefit of green-wave surfing for a migratory ungulate.
    Aikens EO; Monteith KL; Merkle JA; Dwinnell SPH; Fralick GL; Kauffman MJ
    Glob Chang Biol; 2020 Aug; 26(8):4215-4225. PubMed ID: 32524724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Migration distance and maternal resource allocation determine timing of birth in a large herbivore.
    Aikens EO; Dwinnell SPH; LaSharr TN; Jakopak RP; Fralick GL; Randall J; Kaiser R; Thonhoff M; Kauffman MJ; Monteith KL
    Ecology; 2021 Jun; 102(6):e03334. PubMed ID: 33710647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau.
    Shen M; Piao S; Cong N; Zhang G; Jassens IA
    Glob Chang Biol; 2015 Oct; 21(10):3647-56. PubMed ID: 25926356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological effects of fear: How spatiotemporal heterogeneity in predation risk influences mule deer access to forage in a sky-island system.
    Lowrey C; Longshore KM; Choate DM; Nagol JR; Sexton J; Thompson D
    Ecol Evol; 2019 Jun; 9(12):7213-7226. PubMed ID: 31380044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the future impact of droughts on ungulate populations in arid and semi-arid environments.
    Duncan C; Chauvenet AL; McRae LM; Pettorelli N
    PLoS One; 2012; 7(12):e51490. PubMed ID: 23284700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probability assessment of vegetation vulnerability to drought based on remote sensing data.
    Alamdarloo EH; Manesh MB; Khosravi H
    Environ Monit Assess; 2018 Nov; 190(12):702. PubMed ID: 30406494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of normalized difference vegetation index curves reveals overwinter mule deer survival is driven by both spring and autumn phenology.
    Hurley MA; Hebblewhite M; Gaillard JM; Dray S; Taylor KA; Smith WK; Zager P; Bonenfant C
    Philos Trans R Soc Lond B Biol Sci; 2014; 369(1643):20130196. PubMed ID: 24733951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A perception of the nexus "resistance, recovery, resilience" of vegetations responded to extreme precipitation pulses in arid and semi-arid regions: A case study of the Qilian Mountains Nature Reserve, China.
    Zhang S; Zhang J; Liang S; Liu S; Zhou Y
    Sci Total Environ; 2022 Oct; 843():157105. PubMed ID: 35779721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weather and Prey Predict Mammals' Visitation to Water.
    Harris G; Sanderson JG; Erz J; Lehnen SE; Butler MJ
    PLoS One; 2015; 10(11):e0141355. PubMed ID: 26560518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shifts in Vegetation Cover of Southern California Deserts in Response to Recent Climate Variations.
    Potter C
    Remote Sens Earth Syst Sci; 2019 Sep; 2():79-87. PubMed ID: 32691017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vegetation response to changes in temperature, rainfall, and dust in arid environments.
    Ebrahimi-Khusfi Z; Mirakbari M; Khosroshahi M
    Environ Monit Assess; 2020 Oct; 192(11):691. PubMed ID: 33037483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid warming and drought negatively impact population size and reproductive dynamics of an avian predator in the arid southwest.
    Cruz-McDonnell KK; Wolf BO
    Glob Chang Biol; 2016 Jan; 22(1):237-53. PubMed ID: 26367541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of desert biological soil crusts to alterations in precipitation frequency.
    Belnap J; Phillips SL; Miller ME
    Oecologia; 2004 Oct; 141(2):306-16. PubMed ID: 14689292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of drought and climate factors on vegetation dynamics in Central Asia from 1982 to 2020.
    Liu L; Peng J; Li G; Guan J; Han W; Ju X; Zheng J
    J Environ Manage; 2023 Feb; 328():116997. PubMed ID: 36516706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Productivity and phenological responses of natural vegetation to present and future inter-annual climate variability across semi-arid river basins in Chile.
    Glade FE; Miranda MD; Meza FJ; van Leeuwen WJ
    Environ Monit Assess; 2016 Dec; 188(12):676. PubMed ID: 27858259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal differences in climate change impacts on vegetation cover in China from 1982 to 2015.
    Jin K; Wang F; Zong Q; Qin P; Liu C; Wang S
    Environ Sci Pollut Res Int; 2022 Feb; 29(7):10263-10276. PubMed ID: 34519006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.