These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29607350)

  • 1. How Dark Are Radial Breathing Modes in Plasmonic Nanodisks?
    Schmidt FP; Losquin A; Hofer F; Hohenau A; Krenn JR; Kociak M
    ACS Photonics; 2018 Mar; 5(3):861-866. PubMed ID: 29607350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron energy loss of ultraviolet plasmonic modes in aluminum nanodisks.
    Yang Y; Hobbs RG; Keathley PD; Berggren KK
    Opt Express; 2020 Sep; 28(19):27405-27414. PubMed ID: 32988035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dark plasmonic breathing modes in silver nanodisks.
    Schmidt FP; Ditlbacher H; Hohenester U; Hohenau A; Hofer F; Krenn JR
    Nano Lett; 2012 Nov; 12(11):5780-3. PubMed ID: 23025804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamental Limit of Plasmonic Cathodoluminescence.
    Schmidt FP; Losquin A; Horák M; Hohenester U; Stöger-Pollach M; Krenn JR
    Nano Lett; 2021 Jan; 21(1):590-596. PubMed ID: 33336569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of substrates for the visibility of "dark" plasmonic modes.
    Fiedler S; Raza S; Ai R; Wang J; Busch K; Stenger N; Mortensen NA; Wolff C
    Opt Express; 2020 Apr; 28(9):13938-13948. PubMed ID: 32403859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements.
    Losquin A; Zagonel LF; Myroshnychenko V; Rodríguez-González B; Tencé M; Scarabelli L; Förstner J; Liz-Marzán LM; García de Abajo FJ; Stéphan O; Kociak M
    Nano Lett; 2015 Feb; 15(2):1229-37. PubMed ID: 25603194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlative electron energy loss spectroscopy and cathodoluminescence spectroscopy on three-dimensional plasmonic split ring resonators.
    Bicket IC; Bellido EP; Meuret S; Polman A; Botton GA
    Microscopy (Oxf); 2018 Mar; 67(suppl_1):i40-i51. PubMed ID: 29584929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free Electron-Plasmon Coupling Strength and Near-Field Retrieval through Electron Energy-Dependent Cathodoluminescence Spectroscopy.
    Akerboom E; Di Giulio V; Schilder NJ; García de Abajo FJ; Polman A
    ACS Nano; 2024 May; 18(21):13560-13567. PubMed ID: 38742710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study.
    Myroshnychenko V; Nelayah J; Adamo G; Geuquet N; Rodríguez-Fernández J; Pastoriza-Santos I; MacDonald KF; Henrard L; Liz-Marzán LM; Zheludev NI; Kociak M; García de Abajo FJ
    Nano Lett; 2012 Aug; 12(8):4172-80. PubMed ID: 22746278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon modes of a silver thin film taper probed with STEM-EELS.
    Schmidt FP; Ditlbacher H; Trügler A; Hohenester U; Hohenau A; Hofer F; Krenn JR
    Opt Lett; 2015 Dec; 40(23):5670-3. PubMed ID: 26625078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Momentum-resolved EELS and CL study on 1D-plasmonic crystal prepared by FIB method.
    Yasuhara A; Shibata M; Yamamoto W; Machfuudzoh I; Yanagimoto S; Sannomiya T
    Microscopy (Oxf); 2024 May; ():. PubMed ID: 38702889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct optical excitation of dark plasmons for hot electron generation.
    Mueller NS; Vieira BGM; Höing D; Schulz F; Barros EB; Lange H; Reich S
    Faraday Discuss; 2019 May; 214(0):159-173. PubMed ID: 30912539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios.
    Langhammer C; Kasemo B; Zorić I
    J Chem Phys; 2007 May; 126(19):194702. PubMed ID: 17523823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating acoustic and plasmonic modes in gold nanostars.
    Chatterjee S; Ricciardi L; Deitz JI; Williams REA; McComb DW; Strangi G
    Nanoscale Adv; 2019 Jul; 1(7):2690-2698. PubMed ID: 36132721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy.
    Chaturvedi P; Hsu KH; Kumar A; Fung KH; Mabon JC; Fang NX
    ACS Nano; 2009 Oct; 3(10):2965-74. PubMed ID: 19739603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale Spatial Coherent Control over the Modal Excitation of a Coupled Plasmonic Resonator System.
    Coenen T; Schoen DT; Mann SA; Rodriguez SR; Brenny BJ; Polman A; Brongersma ML
    Nano Lett; 2015 Nov; 15(11):7666-70. PubMed ID: 26457569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multipolar Nanocube Plasmon Mode-Mixing in Finite Substrates.
    Cherqui C; Li G; Busche JA; Quillin SC; Camden JP; Masiello DJ
    J Phys Chem Lett; 2018 Feb; 9(3):504-512. PubMed ID: 29314843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging of Antiferroelectric Dark Modes in an Inverted Plasmonic Lattice.
    Rodríguez-Álvarez J; Labarta A; Idrobo JC; Dell'Anna R; Cian A; Giubertoni D; Borrisé X; Guerrero A; Perez-Murano F; Fraile Rodríguez A; Batlle X
    ACS Nano; 2023 May; 17(9):8123-8132. PubMed ID: 37089111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observing Plasmon Damping Due to Adhesion Layers in Gold Nanostructures Using Electron Energy Loss Spectroscopy.
    Madsen SJ; Esfandyarpour M; Brongersma ML; Sinclair R
    ACS Photonics; 2017 Feb; 4(2):268-274. PubMed ID: 28944259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.