These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 29607452)
1. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms. Cunha JT; Costa CE; Ferraz L; Romaní A; Johansson B; Sá-Correia I; Domingues L Appl Microbiol Biotechnol; 2018 May; 102(10):4589-4600. PubMed ID: 29607452 [TBL] [Abstract][Full Text] [Related]
2. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae. Sakihama Y; Hasunuma T; Kondo A J Biosci Bioeng; 2015 Mar; 119(3):297-302. PubMed ID: 25282639 [TBL] [Abstract][Full Text] [Related]
3. Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms. Swinnen S; Henriques SF; Shrestha R; Ho PW; Sá-Correia I; Nevoigt E Microb Cell Fact; 2017 Jan; 16(1):7. PubMed ID: 28068993 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Tanaka K; Ishii Y; Ogawa J; Shima J Appl Environ Microbiol; 2012 Nov; 78(22):8161-3. PubMed ID: 22961896 [TBL] [Abstract][Full Text] [Related]
5. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis. Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae. Oh EJ; Wei N; Kwak S; Kim H; Jin YS J Biotechnol; 2019 Feb; 292():1-4. PubMed ID: 30615911 [TBL] [Abstract][Full Text] [Related]
7. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. Casey E; Sedlak M; Ho NW; Mosier NS FEMS Yeast Res; 2010 Jun; 10(4):385-93. PubMed ID: 20402796 [TBL] [Abstract][Full Text] [Related]
8. Regulatory mechanism of Haa1p and Tye7p in Saccharomyces cerevisiae when fermenting mixed glucose and xylose with or without inhibitors. Li B; Wang L; Xie JY; Xia ZY; Xie CY; Tang YQ Microb Cell Fact; 2022 May; 21(1):105. PubMed ID: 35643525 [TBL] [Abstract][Full Text] [Related]
9. The Zygosaccharomyces bailii transcription factor Haa1 is required for acetic acid and copper stress responses suggesting subfunctionalization of the ancestral bifunctional protein Haa1/Cup2. Palma M; Dias PJ; Roque FC; Luzia L; Guerreiro JF; Sá-Correia I BMC Genomics; 2017 Jan; 18(1):75. PubMed ID: 28086780 [TBL] [Abstract][Full Text] [Related]
10. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering. Chen Y; Stabryla L; Wei N Appl Environ Microbiol; 2016 Jan; 82(7):2156-2166. PubMed ID: 26826231 [TBL] [Abstract][Full Text] [Related]
11. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors. Cunha JT; Aguiar TQ; Romaní A; Oliveira C; Domingues L Bioresour Technol; 2015 Sep; 191():7-16. PubMed ID: 25974617 [TBL] [Abstract][Full Text] [Related]
12. Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose. Ismail KS; Sakamoto T; Hasunuma T; Zhao XQ; Kondo A Biotechnol J; 2014 Dec; 9(12):1519-25. PubMed ID: 24924214 [TBL] [Abstract][Full Text] [Related]
13. Casein Kinase I Isoform Hrr25 Is a Negative Regulator of Haa1 in the Weak Acid Stress Response Pathway in Saccharomyces cerevisiae. Collins ME; Black JJ; Liu Z Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28432100 [TBL] [Abstract][Full Text] [Related]
14. Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress. Mira NP; Henriques SF; Keller G; Teixeira MC; Matos RG; Arraiano CM; Winge DR; Sá-Correia I Nucleic Acids Res; 2011 Sep; 39(16):6896-907. PubMed ID: 21586585 [TBL] [Abstract][Full Text] [Related]
15. The NHR1-1 of Prs1 and the pentameric motif 284KKCPK288 of Prs3 permit multi-functionality of the PRPP synthetase in Saccharomyces cerevisiae. Sauvaget M; Hutton F; Coull R; Vavassori S; Wang K; Reznik A; Chyker T; Newfield CG; Euston E; Benary G; Schweizer LM; Schweizer M FEMS Yeast Res; 2019 Mar; 19(2):. PubMed ID: 30649305 [TBL] [Abstract][Full Text] [Related]
16. Valproic acid- and lithium-sensitivity in prs mutants of Saccharomyces cerevisiae. Kleineidam A; Vavassori S; Wang K; Schweizer LM; Griac P; Schweizer M Biochem Soc Trans; 2009 Oct; 37(Pt 5):1115-20. PubMed ID: 19754463 [TBL] [Abstract][Full Text] [Related]
17. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37. Li YC; Mitsumasu K; Gou ZX; Gou M; Tang YQ; Li GY; Wu XL; Akamatsu T; Taguchi H; Kida K Appl Microbiol Biotechnol; 2016 Feb; 100(3):1531-1542. PubMed ID: 26603762 [TBL] [Abstract][Full Text] [Related]
18. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance. Ma C; Wei X; Sun C; Zhang F; Xu J; Zhao X; Bai F Appl Microbiol Biotechnol; 2015 Mar; 99(5):2441-9. PubMed ID: 25698512 [TBL] [Abstract][Full Text] [Related]
19. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Hasunuma T; Sanda T; Yamada R; Yoshimura K; Ishii J; Kondo A Microb Cell Fact; 2011 Jan; 10(1):2. PubMed ID: 21219616 [TBL] [Abstract][Full Text] [Related]
20. Inhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation. Li YC; Gou ZX; Zhang Y; Xia ZY; Tang YQ; Kida K Braz J Microbiol; 2017; 48(4):791-800. PubMed ID: 28629968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]