BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29608286)

  • 1. Promoting Vibrations and the Function of Enzymes. Emerging Theoretical and Experimental Convergence.
    Schramm VL; Schwartz SD
    Biochemistry; 2018 Jun; 57(24):3299-3308. PubMed ID: 29608286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse enzyme isotope effects in human purine nucleoside phosphorylase with heavy asparagine labels.
    Harijan RK; Zoi I; Antoniou D; Schwartz SD; Schramm VL
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):E6209-E6216. PubMed ID: 29915028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isotope-specific and amino acid-specific heavy atom substitutions alter barrier crossing in human purine nucleoside phosphorylase.
    Suarez J; Schramm VL
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11247-51. PubMed ID: 26305965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic-site design for inverse heavy-enzyme isotope effects in human purine nucleoside phosphorylase.
    Harijan RK; Zoi I; Antoniou D; Schwartz SD; Schramm VL
    Proc Natl Acad Sci U S A; 2017 Jun; 114(25):6456-6461. PubMed ID: 28584087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic transition states and dynamic motion in barrier crossing.
    Schwartz SD; Schramm VL
    Nat Chem Biol; 2009 Aug; 5(8):551-8. PubMed ID: 19620996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition States and transition state analogue interactions with enzymes.
    Schramm VL
    Acc Chem Res; 2015 Apr; 48(4):1032-9. PubMed ID: 25848811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse heavy enzyme isotope effects in methylthioadenosine nucleosidases.
    Brown M; Zoi I; Antoniou D; Namanja-Magliano HA; Schwartz SD; Schramm VL
    Proc Natl Acad Sci U S A; 2021 Oct; 118(40):. PubMed ID: 34580228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic detail of chemical transformation at the transition state of an enzymatic reaction.
    Saen-Oon S; Quaytman-Machleder S; Schramm VL; Schwartz SD
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16543-8. PubMed ID: 18946041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoting vibrations in human purine nucleoside phosphorylase. A molecular dynamics and hybrid quantum mechanical/molecular mechanical study.
    Núñez S; Antoniou D; Schramm VL; Schwartz SD
    J Am Chem Soc; 2004 Dec; 126(48):15720-9. PubMed ID: 15571394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic transition states: thermodynamics, dynamics and analogue design.
    Schramm VL
    Arch Biochem Biophys; 2005 Jan; 433(1):13-26. PubMed ID: 15581562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Femtosecond dynamics coupled to chemical barrier crossing in a Born-Oppenheimer enzyme.
    Silva RG; Murkin AS; Schramm VL
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):18661-5. PubMed ID: 22065757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulating Enzyme Catalysis through Mutations Designed to Alter Rapid Protein Dynamics.
    Zoi I; Suarez J; Antoniou D; Cameron SA; Schramm VL; Schwartz SD
    J Am Chem Soc; 2016 Mar; 138(10):3403-9. PubMed ID: 26927977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into catalytically relevant correlated motions in human purine nucleoside phosphorylase.
    Núñez S; Wing C; Antoniou D; Schramm VL; Schwartz SD
    J Phys Chem A; 2006 Jan; 110(2):463-72. PubMed ID: 16405318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic transition states and transition state analogues.
    Schramm VL
    Curr Opin Struct Biol; 2005 Dec; 15(6):604-13. PubMed ID: 16274984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass Modulation of Protein Dynamics Associated with Barrier Crossing in Purine Nucleoside Phosphorylase.
    Antoniou D; Ge X; Schramm VL; Schwartz SD
    J Phys Chem Lett; 2012 Dec; 3(23):3538-3544. PubMed ID: 24496053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connecting Conformational Motions to Rapid Dynamics in Human Purine Nucleoside Phosphorylase.
    Frost CF; Balasubramani SG; Antoniou D; Schwartz SD
    J Phys Chem B; 2023 Jan; 127(1):144-150. PubMed ID: 36538016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of dynamics in enzyme catalysis: substantial versus semantic controversies.
    Kohen A
    Acc Chem Res; 2015 Feb; 48(2):466-73. PubMed ID: 25539442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remote mutations alter transition-state structure of human purine nucleoside phosphorylase.
    Luo M; Li L; Schramm VL
    Biochemistry; 2008 Feb; 47(8):2565-76. PubMed ID: 18281957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydride Transfer in DHFR by Transition Path Sampling, Kinetic Isotope Effects, and Heavy Enzyme Studies.
    Wang Z; Antoniou D; Schwartz SD; Schramm VL
    Biochemistry; 2016 Jan; 55(1):157-66. PubMed ID: 26652185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic states of substrates and transition state analogues at the catalytic sites of N-ribosyltransferases.
    Sauve AA; Cahill SM; Zech SG; Basso LA; Lewandowicz A; Santos DS; Grubmeyer C; Evans GB; Furneaux RH; Tyler PC; McDermott A; Girvin ME; Schramm VL
    Biochemistry; 2003 May; 42(19):5694-705. PubMed ID: 12741826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.