These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29608295)

  • 21. Developmental toxicity assessments for TBBPA and its commonly used analogs with a human embryonic stem cell liver differentiation model.
    Li S; Yang R; Yin N; Zhao M; Zhang S; Faiola F
    Chemosphere; 2023 Jan; 310():136924. PubMed ID: 36272632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of human retinal organoid models for bisphenol toxicity assessment.
    Li M; Gong J; Ge L; Gao H; Yang J; Yang C; Kang J; Fang Y; Xu H
    Ecotoxicol Environ Saf; 2022 Oct; 245():114094. PubMed ID: 36126549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tetrabromobisphenol-A/S and Nine Novel Analogs in Biological Samples from the Chinese Bohai Sea: Implications for Trophic Transfer.
    Liu AF; Qu GB; Yu M; Liu YW; Shi JB; Jiang GB
    Environ Sci Technol; 2016 Apr; 50(8):4203-11. PubMed ID: 27008063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic perturbation, proliferation and reactive oxygen species jointly contribute to cytotoxicity of human breast cancer cell induced by tetrabromo and tetrachloro bisphenol A.
    Zhao C; Tang Z; Chung ACK; Wang H; Cai Z
    Ecotoxicol Environ Saf; 2019 Apr; 170():495-501. PubMed ID: 30557707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An In Vitro Comparative Study of the Effects of Tetrabromobisphenol A and Tetrabromobisphenol S on Human Erythrocyte Membranes-Changes in ATP Level, Perturbations in Membrane Fluidity, Alterations in Conformational State and Damage to Proteins.
    Jarosiewicz M; Duchnowicz P; Jarosiewicz P; Huras B; Bukowska B
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial O-methylation of the flame retardant tetrabromobisphenol-A.
    George KW; Häggblom MM
    Environ Sci Technol; 2008 Aug; 42(15):5555-61. PubMed ID: 18754475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tetrabromobisphenol A-Induced Apoptosis in Neural Stem Cells Through Oxidative Stress and Mitochondrial Dysfunction.
    Cho JH; Lee S; Jeon H; Kim AH; Lee W; Lee Y; Yang S; Yun J; Jung YS; Lee J
    Neurotox Res; 2020 Jun; 38(1):74-85. PubMed ID: 32108298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High dose tetrabromobisphenol A impairs hippocampal neurogenesis and memory retention.
    Kim AH; Chun HJ; Lee S; Kim HS; Lee J
    Food Chem Toxicol; 2017 Aug; 106(Pt A):223-231. PubMed ID: 28564613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atomic-scale investigation of the interactions between tetrabromobisphenol A, tetrabromobisphenol S and bovine trypsin by spectroscopies and molecular dynamics simulations.
    Ding K; Zhang H; Wang H; Lv X; Pan L; Zhang W; Zhuang S
    J Hazard Mater; 2015 Dec; 299():486-94. PubMed ID: 26252992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intranasal administration of tetrabromobisphenol A bis(2-hydroxyethyl ether) induces neurobehavioral changes in neonatal Sprague Dawley rats.
    Liu QS; Liu N; Sun Z; Zhou Q; Jiang G
    J Environ Sci (China); 2018 Jan; 63():76-86. PubMed ID: 29406119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of Unknown Brominated Bisphenol S Congeners in Contaminated Soils as the Transformation Products of Tetrabromobisphenol S Derivatives.
    Liu A; Shi J; Shen Z; Lin Y; Qu G; Zhao Z; Jiang G
    Environ Sci Technol; 2018 Sep; 52(18):10480-10489. PubMed ID: 30095896
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of neonatal exposure to the flame retardant tetrabromobisphenol-A, aluminum diethylphosphinate or zinc stannate on long-term potentiation and synaptic protein levels in mice.
    Hendriks HS; Koolen LA; Dingemans MM; Viberg H; Lee I; Leonards PE; Ramakers GM; Westerink RH
    Arch Toxicol; 2015 Dec; 89(12):2345-54. PubMed ID: 25253649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro assessment of eryptotic potential of tetrabromobisphenol A and other bromophenolic flame retardants.
    Jarosiewicz M; Michałowicz J; Bukowska B
    Chemosphere; 2019 Jan; 215():404-412. PubMed ID: 30336317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tetrabromobisphenol A induces THR β-mediated inflammation and uterine injury in mice at environmentally relevant exposure concentrations.
    Zhang W; Li A; Pan Y; Wang F; Li M; Liang Y; Yao X; Song J; Song M; Jiang G
    J Hazard Mater; 2021 Apr; 407():124859. PubMed ID: 33360189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential risk of coupling products between tetrahalobisphenol A and humic acid prepared via oxidation with a biomimetic catalyst.
    Kodama R; Sazawa K; Miyamoto T; Zhu Q; Igarashi M; Oda K; Kuramitz H; Fukushima M
    Chemosphere; 2018 Aug; 204():63-70. PubMed ID: 29653323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In ovo exposure to brominated flame retardants Part I: Assessment of effects of TBBPA-BDBPE on survival, morphometric and physiological endpoints in zebra finches.
    Eng ML; Williams TD; Fernie KJ; Karouna Renier NK; Henry PFP; Letcher RJ; Elliott JE
    Ecotoxicol Environ Saf; 2019 Sep; 179():104-110. PubMed ID: 31026748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing the effects of tetrabromobisphenol-A, bisphenol A, and their potential replacement alternatives, TBBPA-bis(2,3-dibromopropyl ether) and bisphenol S, on cell viability and messenger ribonucleic acid expression in chicken embryonic hepatocytes.
    Ma M; Crump D; Farmahin R; Kennedy SW
    Environ Toxicol Chem; 2015 Feb; 34(2):391-401. PubMed ID: 25470364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular mechanisms and tissue targets of brominated flame retardants, BDE-47 and TBBPA, in embryo-larval life stages of zebrafish (Danio rerio).
    Parsons A; Lange A; Hutchinson TH; Miyagawa S; Iguchi T; Kudoh T; Tyler CR
    Aquat Toxicol; 2019 Apr; 209():99-112. PubMed ID: 30763833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Halogenated bisphenol a analogues induce PPARγ-independent toxicity within human hepatocellular carcinoma cells.
    Cheng V; Volz DC
    Curr Res Toxicol; 2022; 3():100079. PubMed ID: 35734227
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomonitoring Equivalents (BEs) for tetrabromobisphenol A.
    Hays SM; Kirman CR
    Regul Toxicol Pharmacol; 2019 Mar; 102():108-114. PubMed ID: 30593853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.