These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 29608297)
1. Uncoupled Redox-Inactive Lewis Acids in the Secondary Coordination Sphere Entice Ligand-Based Nitrite Reduction. Burns KT; Marks WR; Cheung PM; Seda T; Zakharov LN; Gilbertson JD Inorg Chem; 2018 Aug; 57(16):9601-9610. PubMed ID: 29608297 [TBL] [Abstract][Full Text] [Related]
2. Pyridinediimine Iron Complexes with Pendant Redox-Inactive Metals Located in the Secondary Coordination Sphere. Delgado M; Ziegler JM; Seda T; Zakharov LN; Gilbertson JD Inorg Chem; 2016 Jan; 55(2):555-7. PubMed ID: 26692111 [TBL] [Abstract][Full Text] [Related]
3. Nitrite reduction by a pyridinediimine complex with a proton-responsive secondary coordination sphere. Kwon YM; Delgado M; Zakharov LN; Seda T; Gilbertson JD Chem Commun (Camb); 2016 Sep; 52(73):11016-9. PubMed ID: 27539064 [TBL] [Abstract][Full Text] [Related]
6. Probing the Protonation State and the Redox-Active Sites of Pendant Base Iron(II) and Zinc(II) Pyridinediimine Complexes. Delgado M; Sommer SK; Swanson SP; Berger RF; Seda T; Zakharov LN; Gilbertson JD Inorg Chem; 2015 Aug; 54(15):7239-48. PubMed ID: 26204455 [TBL] [Abstract][Full Text] [Related]
7. Redox Potential and Electronic Structure Effects of Proximal Nonredox Active Cations in Cobalt Schiff Base Complexes. Reath AH; Ziller JW; Tsay C; Ryan AJ; Yang JY Inorg Chem; 2017 Mar; 56(6):3713-3718. PubMed ID: 28240885 [TBL] [Abstract][Full Text] [Related]
8. Incorporation of redox-inactive cations promotes iron catalyzed aerobic C-H oxidation at mild potentials. Chantarojsiri T; Ziller JW; Yang JY Chem Sci; 2018 Mar; 9(9):2567-2574. PubMed ID: 29732136 [TBL] [Abstract][Full Text] [Related]
9. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony. Jones JS; Gabbaï FP Acc Chem Res; 2016 May; 49(5):857-67. PubMed ID: 27092722 [TBL] [Abstract][Full Text] [Related]
10. Revealing the Influence of Diverse Secondary Metal Cations on Redox-Active Palladium Complexes. Golwankar RR; Kumar A; Day VW; Blakemore JD Chemistry; 2022 Jul; 28(38):e202200344. PubMed ID: 35390210 [TBL] [Abstract][Full Text] [Related]
11. Biopyrrin Pigments: From Heme Metabolites to Redox-Active Ligands and Luminescent Radicals. Tomat E; Curtis CJ Acc Chem Res; 2021 Dec; 54(24):4584-4594. PubMed ID: 34870973 [TBL] [Abstract][Full Text] [Related]
12. Effect of Redox-Inactive Metal Ion-Nickel(III) Interactions on the Redox Properties and Proton-Coupled Electron Transfer Reactivity. Kaur S; Bera M; Santra A; Munshi S; Sterbinsky GE; Wu T; Moonshiram D; Paria S Inorg Chem; 2022 Sep; 61(36):14252-14266. PubMed ID: 36041064 [TBL] [Abstract][Full Text] [Related]
13. Trivalent Lewis Acidic Cations Govern the Electronic Properties and Stability of Heterobimetallic Complexes of Nickel. Kumar A; Lionetti D; Day VW; Blakemore JD Chemistry; 2018 Jan; 24(1):141-149. PubMed ID: 29024095 [TBL] [Abstract][Full Text] [Related]
14. Use of Crown Ether Functions as Secondary Coordination Spheres for the Manipulation of Ligand-Metal Intramolecular Electron Transfer in Copper-Guanidine Complexes. Haaf S; Kaifer E; Wadepohl H; Himmel HJ Chemistry; 2021 Jan; 27(3):959-970. PubMed ID: 32833269 [TBL] [Abstract][Full Text] [Related]
15. Secondary Coordination Sphere Influences the Formation of Fe(III)-O or Fe(III)-OH in Nitrite Reduction: A Synthetic and Computational Study. Park YJ; Peñas-Defrutos MN; Drummond MJ; Gordon Z; Kelly OR; Garvey IJ; Gullett KL; García-Melchor M; Fout AR Inorg Chem; 2022 May; 61(21):8182-8192. PubMed ID: 35580163 [TBL] [Abstract][Full Text] [Related]