These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 29608556)

  • 1. Real-time fluorescence and deformability cytometry.
    Rosendahl P; Plak K; Jacobi A; Kraeter M; Toepfner N; Otto O; Herold C; Winzi M; Herbig M; Ge Y; Girardo S; Wagner K; Baum B; Guck J
    Nat Methods; 2018 May; 15(5):355-358. PubMed ID: 29608556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Biomechanical Properties of Hematopoietic Stem and Progenitor Cells Using Real-Time Fluorescence and Deformability Cytometry.
    Jacobi A; Rosendahl P; Kräter M; Urbanska M; Herbig M; Guck J
    Methods Mol Biol; 2019; 2017():135-148. PubMed ID: 31197774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time deformability cytometry as a label-free indicator of cell function.
    Otto O; Rosendahl P; Golfier S; Mietke A; Herbig M; Jacobi A; Topfner N; Herold C; Klaue D; Girardo S; Winzi M; Fischer-Friedrich E; Guck J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1861-4. PubMed ID: 26736644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic chemical cytometry based on modulation of local field strength.
    Wang HY; Lu C
    Chem Commun (Camb); 2006 Sep; (33):3528-30. PubMed ID: 16921434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening.
    Nedbal J; Visitkul V; Ortiz-Zapater E; Weitsman G; Chana P; Matthews DR; Ng T; Ameer-Beg SM
    Cytometry A; 2015 Feb; 87(2):104-18. PubMed ID: 25523156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel imaging microfluidic cytometer.
    Ehrlich DJ; McKenna BK; Evans JG; Belkina AC; Denis GV; Sherr DH; Cheung MC
    Methods Cell Biol; 2011; 102():49-75. PubMed ID: 21704835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Mechanotyping of a Single Cell with Two Consecutive Constrictions of Different Sizes and an Electrical Detection System.
    Sano M; Kaji N; Rowat AC; Yasaki H; Shao L; Odaka H; Yasui T; Higashiyama T; Baba Y
    Anal Chem; 2019 Oct; 91(20):12890-12899. PubMed ID: 31442026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell chemical lysis on microfluidic chips with arrays of microwells.
    Jen CP; Hsiao JH; Maslov NA
    Sensors (Basel); 2012; 12(1):347-58. PubMed ID: 22368473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in microfluidic techniques for single-cell biophysical characterization.
    Zheng Y; Nguyen J; Wei Y; Sun Y
    Lab Chip; 2013 Jul; 13(13):2464-83. PubMed ID: 23681312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rise of the micromachines: microfluidics and the future of cytometry.
    Wlodkowic D; Darzynkiewicz Z
    Methods Cell Biol; 2011; 102():105-25. PubMed ID: 21704837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time deformability cytometry: on-the-fly cell mechanical phenotyping.
    Otto O; Rosendahl P; Mietke A; Golfier S; Herold C; Klaue D; Girardo S; Pagliara S; Ekpenyong A; Jacobi A; Wobus M; Töpfner N; Keyser UF; Mansfeld J; Fischer-Friedrich E; Guck J
    Nat Methods; 2015 Mar; 12(3):199-202, 4 p following 202. PubMed ID: 25643151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiparameter cell-tracking intrinsic cytometry for single-cell characterization.
    Apichitsopa N; Jaffe A; Voldman J
    Lab Chip; 2018 May; 18(10):1430-1439. PubMed ID: 29687107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring cell mechanics by optical alignment compression cytometry.
    Roth KB; Eggleton CD; Neeves KB; Marr DW
    Lab Chip; 2013 Apr; 13(8):1571-7. PubMed ID: 23440063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells.
    Su X; Qiu Y; Marquez-Curtis L; Gupta M; Capjack CE; Rozmus W; Janowska-Wieczorek A; Tsui YY
    J Biomed Opt; 2011 Jun; 16(6):067003. PubMed ID: 21721824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic systems for live cell imaging.
    Lee P; Gaige T; Hung P
    Methods Cell Biol; 2011; 102():77-103. PubMed ID: 21704836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast Microfluidic Cellular Imaging by Optical Time-Stretch.
    Lau AK; Wong TT; Shum HC; Wong KK; Tsia KK
    Methods Mol Biol; 2016; 1389():23-45. PubMed ID: 27460236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput and high-resolution flow cytometry in molded microfluidic devices.
    Simonnet C; Groisman A
    Anal Chem; 2006 Aug; 78(16):5653-63. PubMed ID: 16906708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic stretching of single cells for large population mechanical phenotyping.
    Gossett DR; Tse HT; Lee SA; Ying Y; Lindgren AG; Yang OO; Rao J; Clark AT; Di Carlo D
    Proc Natl Acad Sci U S A; 2012 May; 109(20):7630-5. PubMed ID: 22547795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Impedance-Deformability Cytometry for Label-Free Single Neutrophil Mechanophenotyping.
    Petchakup C; Yang H; Gong L; He L; Tay HM; Dalan R; Chung AJ; Li KHH; Hou HW
    Small; 2022 May; 18(18):e2104822. PubMed ID: 35253966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanophotonic light sources for fluorescence spectroscopy and cellular imaging.
    Hayden O; Payne CK
    Angew Chem Int Ed Engl; 2005 Feb; 44(9):1395-8. PubMed ID: 15662656
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.