BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29608678)

  • 1. FA-SAT Is an Old Satellite DNA Frozen in Several Bilateria Genomes.
    Chaves R; Ferreira D; Mendes-da-Silva A; Meles S; Adega F
    Genome Biol Evol; 2017 Nov; 9(11):3073-3087. PubMed ID: 29608678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosomal localization of the major satellite DNA family (FA-SAT) in the domestic cat.
    Santos S; Chaves R; Guedes-Pinto H
    Cytogenet Genome Res; 2004; 107(1-2):119-22. PubMed ID: 15305066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artifacts of the 1.9x feline genome assembly derived from the feline-specific satellite sequence.
    Pontius JU; O'Brien SJ
    J Hered; 2009; 100 Suppl 1(Suppl 1):S14-8. PubMed ID: 19531733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplification of the major satellite DNA family (FA-SAT) in a cat fibrosarcoma might be related to chromosomal instability.
    Santos S; Chaves R; Adega F; Bastos E; Guedes-Pinto H
    J Hered; 2006; 97(2):114-8. PubMed ID: 16469867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin and evolution of a major feline satellite DNA.
    Fanning TG
    J Mol Biol; 1987 Oct; 197(4):627-34. PubMed ID: 3430595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo identification of satellite DNAs in the sequenced genomes of Drosophila virilis and D. americana using the RepeatExplorer and TAREAN pipelines.
    Silva BSML; Heringer P; Dias GB; Svartman M; Kuhn GCS
    PLoS One; 2019; 14(12):e0223466. PubMed ID: 31856171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Satellite DNA in Paphiopedilum subgenus Parvisepalum as revealed by high-throughput sequencing and fluorescent in situ hybridization.
    Lee YI; Yap JW; Izan S; Leitch IJ; Fay MF; Lee YC; Hidalgo O; Dodsworth S; Smulders MJM; Gravendeel B; Leitch AR
    BMC Genomics; 2018 Aug; 19(1):578. PubMed ID: 30068293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA Methylation Patterns of a Satellite Non-coding Sequence -
    Ferreira D; Escudeiro A; Adega F; Chaves R
    Front Genet; 2019; 10():101. PubMed ID: 30809250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome localization and orientation of the simple sequence repeat of human satellite I DNA.
    Meyne J; Goodwin EH; Moyzis RK
    Chromosoma; 1994 Apr; 103(2):99-103. PubMed ID: 8055716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning, characterization and chromosomal location of a satellite DNA from the Pacific oyster, Crassostrea gigas.
    Clabby C; Goswami U; Flavin F; Wilkins NP; Houghton JA; Powell R
    Gene; 1996 Feb; 168(2):205-9. PubMed ID: 8654945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly conserved pericentromeric domain in human and gorilla chromosomes.
    Pita M; Gosálvez J; Gosálvez A; Nieddu M; López-Fernández C; Mezzanotte R
    Cytogenet Genome Res; 2009; 126(3):253-8. PubMed ID: 20068296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FA-SAT ncRNA interacts with PKM2 protein: depletion of this complex induces a switch from cell proliferation to apoptosis.
    Ferreira D; Escudeiro A; Adega F; Anjo SI; Manadas B; Chaves R
    Cell Mol Life Sci; 2020 Apr; 77(7):1371-1386. PubMed ID: 31346634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel satellite DNA isolated in Pecten jacobaeus shows high sequence similarity among molluscs.
    Petraccioli A; Odierna G; Capriglione T; Barucca M; Forconi M; Olmo E; Biscotti MA
    Mol Genet Genomics; 2015 Oct; 290(5):1717-25. PubMed ID: 25832354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Satellite Noncoding RNAs (ncRNA) as Cancer Biomarkers? New Insights from
    Ferreira D; Soares M; Correia J; Adega F; Ferreira F; Chaves R
    OMICS; 2022 Nov; 26(11):622-632. PubMed ID: 36342778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tribe-specific satellite DNA in non-domestic Bovidae.
    Kopecna O; Kubickova S; Cernohorska H; Cabelova K; Vahala J; Martinkova N; Rubes J
    Chromosome Res; 2014 Sep; 22(3):277-91. PubMed ID: 24452783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and chromosomal distribution of a novel satellite DNA sequence of Japanese quail (Coturnix coturnix japonica).
    Tanaka K; Suzuki T; Nojiri T; Yamagata T; Namikawa T; Matsuda Y
    J Hered; 2000; 91(5):412-5. PubMed ID: 10994713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning and characterization of the repetitive DNA sequences that comprise the constitutive heterochromatin of the A and B chromosomes of the Korean field mouse (Apodemus peninsulae, Muridae, Rodentia).
    Matsubara K; Yamada K; Umemoto S; Tsuchiya K; Ikeda N; Nishida C; Chijiwa T; Moriwaki K; Matsuda Y
    Chromosome Res; 2008; 16(7):1013-26. PubMed ID: 18949567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of beta satellite DNA sequences: evidence for duplication-mediated repeat amplification and spreading.
    Cardone MF; Ballarati L; Ventura M; Rocchi M; Marozzi A; Ginelli E; Meneveri R
    Mol Biol Evol; 2004 Sep; 21(9):1792-9. PubMed ID: 15201396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dark Matter of Primate Genomes: Satellite DNA Repeats and Their Evolutionary Dynamics.
    Ahmad SF; Singchat W; Jehangir M; Suntronpong A; Panthum T; Malaivijitnond S; Srikulnath K
    Cells; 2020 Dec; 9(12):. PubMed ID: 33352976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences.
    Tek AL; Song J; Macas J; Jiang J
    Genetics; 2005 Jul; 170(3):1231-8. PubMed ID: 15911575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.