BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 29608923)

  • 1. Harnessing the potential of epigenetic therapies for childhood acute myeloid leukemia.
    Newcombe AA; Gibson BES; Keeshan K
    Exp Hematol; 2018 Jul; 63():1-11. PubMed ID: 29608923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic Modifiers in Myeloid Malignancies: The Role of Histone Deacetylase Inhibitors.
    Ungerstedt JS
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30304859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic mechanisms in AML - a target for therapy.
    Oki Y; Issa JP
    Cancer Treat Res; 2010; 145():19-40. PubMed ID: 20306243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic Therapy in Acute Myeloid Leukemia: Current and Future Directions.
    Kim TK; Gore SD; Zeidan AM
    Semin Hematol; 2015 Jul; 52(3):172-83. PubMed ID: 26111464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecularly targeted therapy in acute myeloid leukemia.
    Gill H; Leung AY; Kwong YL
    Future Oncol; 2016 Mar; 12(6):827-38. PubMed ID: 26828965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic-based treatments emphasize the biologic differences of core-binding factor acute myeloid leukemias.
    Serrano E; Carnicer MJ; Lasa A; Orantes V; Pena J; Brunet S; Aventín A; Sierra J; Nomdedéu JF
    Leuk Res; 2008 Jun; 32(6):944-53. PubMed ID: 18206229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic regulation in myelodysplastic syndromes: implications for therapy.
    Vigna E; Recchia AG; Madeo A; Gentile M; Bossio S; Mazzone C; Lucia E; Morabito L; Gigliotti V; Stefano LD; Caruso N; Servillo P; Franzese S; Fimognari F; Bisconte MG; Gentile C; Morabito F
    Expert Opin Investig Drugs; 2011 Apr; 20(4):465-93. PubMed ID: 21381982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic therapy restores normal hematopoiesis in a zebrafish model of NUP98-HOXA9-induced myeloid disease.
    Deveau AP; Forrester AM; Coombs AJ; Wagner GS; Grabher C; Chute IC; Léger D; Mingay M; Alexe G; Rajan V; Liwski R; Hirst M; Steigmaier K; Lewis SM; Look AT; Berman JN
    Leukemia; 2015 Oct; 29(10):2086-97. PubMed ID: 26017032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MN1 overexpression is driven by loss of DNMT3B methylation activity in inv(16) pediatric AML.
    Larmonie NSD; Arentsen-Peters TCJM; Obulkasim A; Valerio D; Sonneveld E; Danen-van Oorschot AA; de Haas V; Reinhardt D; Zimmermann M; Trka J; Baruchel A; Pieters R; van den Heuvel-Eibrink MM; Zwaan CM; Fornerod M
    Oncogene; 2018 Jan; 37(1):107-115. PubMed ID: 28892045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic therapies in acute myeloid leukemia: the role of hypomethylating agents, histone deacetylase inhibitors and the combination of hypomethylating agents with histone deacetylase inhibitors.
    Xu QY; Yu L
    Chin Med J (Engl); 2020 Mar; 133(6):699-715. PubMed ID: 32044818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lost in translation? Ten years of development of histone deacetylase inhibitors in acute myeloid leukemia and myelodysplastic syndromes.
    Stahl M; Gore SD; Vey N; Prebet T
    Expert Opin Investig Drugs; 2016; 25(3):307-17. PubMed ID: 26807602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant DNA Methylation in Acute Myeloid Leukemia and Its Clinical Implications.
    Yang X; Wong MPM; Ng RK
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31527484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy.
    Prokocimer M; Molchadsky A; Rotter V
    Blood; 2017 Aug; 130(6):699-712. PubMed ID: 28607134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia.
    Ferrara FF; Fazi F; Bianchini A; Padula F; Gelmetti V; Minucci S; Mancini M; Pelicci PG; Lo Coco F; Nervi C
    Cancer Res; 2001 Jan; 61(1):2-7. PubMed ID: 11196162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia.
    Wouters BJ; Delwel R
    Blood; 2016 Jan; 127(1):42-52. PubMed ID: 26660432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Panobinostat for the treatment of acute myelogenous leukemia.
    Morabito F; Voso MT; Hohaus S; Gentile M; Vigna E; Recchia AG; Iovino L; Benedetti E; Lo-Coco F; Galimberti S
    Expert Opin Investig Drugs; 2016 Sep; 25(9):1117-31. PubMed ID: 27485472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Clinical Update of Acute Myeloid Leukemia: Focus on Epigenetic Therapies.
    Lee E; Koh Y; Hong J; Eom HS; Yoon SS
    J Korean Med Sci; 2021 Apr; 36(13):e85. PubMed ID: 33821592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New strategies for relapsed acute myeloid leukemia: fertile ground for translational research.
    Dinner SN; Giles FJ; Altman JK
    Curr Opin Hematol; 2014 Mar; 21(2):79-86. PubMed ID: 24419335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic drug screen identifies the histone deacetylase inhibitor NSC3852 as a potential novel drug for the treatment of pediatric acute myeloid leukemia.
    Wiggers CRM; Govers AMAP; Lelieveld D; Egan DA; Zwaan CM; Sonneveld E; Coffer PJ; Bartels M
    Pediatr Blood Cancer; 2019 Aug; 66(8):e27785. PubMed ID: 31044544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in epigenetic modifiers in acute myeloid leukemia and their clinical utility.
    Hou HA; Tien HF
    Expert Rev Hematol; 2016 May; 9(5):447-69. PubMed ID: 26789100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.