These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns. Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805 [TBL] [Abstract][Full Text] [Related]
4. Expanding the RNA repertoire. North G Nature; 1990 Jun; 345(6276):576-8. PubMed ID: 1693416 [No Abstract] [Full Text] [Related]
5. Facilitation of group I splicing in vivo: misfolding of the Tetrahymena IVS and the role of ribosomal RNA exons. Nikolcheva T; Woodson SA J Mol Biol; 1999 Sep; 292(3):557-67. PubMed ID: 10497021 [TBL] [Abstract][Full Text] [Related]
7. Implications of intermolecularly catalyzed reactions by the Tetrahymena ribozyme. Kay PS; Inoue T Cold Spring Harb Symp Quant Biol; 1987; 52():159-64. PubMed ID: 3331338 [No Abstract] [Full Text] [Related]
8. Active RNA: RNA enzymes in RNA splicing and processing. Davies RW Biosci Rep; 1984 Sep; 4(9):707-27. PubMed ID: 6210116 [No Abstract] [Full Text] [Related]
9. The Tetrahymena ribozyme acts like an RNA restriction endonuclease. Zaug AJ; Been MD; Cech TR Nature; 1986 Dec 4-10; 324(6096):429-33. PubMed ID: 3537808 [TBL] [Abstract][Full Text] [Related]
10. Catalysis of splicing-related reactions between dinucleotides by a ribozyme. Kay PS; Inoue T Nature; 1987 May 28-Jun 3; 327(6120):343-6. PubMed ID: 3647266 [TBL] [Abstract][Full Text] [Related]
11. Biologic catalysis by RNA. Cech TR Harvey Lect; 1986-1987; 82():123-44. PubMed ID: 3329163 [No Abstract] [Full Text] [Related]
12. [Progress in the study of eukaryotic genes]. Gazarian KG; Tarantul VZ Ontogenez; 1980; 11(2):115-29. PubMed ID: 6450386 [No Abstract] [Full Text] [Related]
13. A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core. Caprara MG; Mohr G; Lambowitz AM J Mol Biol; 1996 Apr; 257(3):512-31. PubMed ID: 8648621 [TBL] [Abstract][Full Text] [Related]
14. Self-splicing of Tetrahymena rRNA can proceed with phosphorothioate substitution at the splice sites. Deeney CM; Eperon IC; Potter BV Nucleic Acids Symp Ser; 1987; (18):277-80. PubMed ID: 3697141 [TBL] [Abstract][Full Text] [Related]
15. The great gene shears story. Maddox J Nature; 1989 Dec; 342(6250):609-13. PubMed ID: 2687695 [No Abstract] [Full Text] [Related]
16. Structures involved in Tetrahymena rRNA self-splicing and RNA enzyme activity. Been MD; Barfod ET; Burke JM; Price JV; Tanner NK; Zaug AJ; Cech TR Cold Spring Harb Symp Quant Biol; 1987; 52():147-57. PubMed ID: 3454258 [No Abstract] [Full Text] [Related]
17. Circularizing ribozymes and decoy-competitors by autocatalytic splicing in vitro and in vivo. Puttaraju M; Been MD SAAS Bull Biochem Biotechnol; 1996; 9():77-82. PubMed ID: 8652136 [TBL] [Abstract][Full Text] [Related]
18. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme. Mohr G; Caprara MG; Guo Q; Lambowitz AM Nature; 1994 Jul; 370(6485):147-50. PubMed ID: 8022484 [TBL] [Abstract][Full Text] [Related]
19. Ribozymes. James HA; Turner PC Essays Biochem; 1995; 29():175-92. PubMed ID: 9189720 [No Abstract] [Full Text] [Related]
20. Enzymatic activity of the conserved core of a group I self-splicing intron. Szostak JW Nature; 1986 Jul 3-9; 322(6074):83-6. PubMed ID: 3014350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]