BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29609095)

  • 1. A comparative proteomic characterization and nutritional assessment of naturally- and artificially-cultivated Cordyceps sinensis.
    Zhang X; Liu Q; Zhou W; Li P; Alolga RN; Qi LW; Yin X
    J Proteomics; 2018 Jun; 181():24-35. PubMed ID: 29609095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stage- and Rearing-Dependent Metabolomics Profiling of
    Tang R; Qiu XH; Cao L; Long HL; Han RC
    Insects; 2021 Jul; 12(8):. PubMed ID: 34442232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated metabolomics and transcriptomics reveal metabolites difference between wild and cultivated Ophiocordyceps sinensis.
    Zhang J; Wang N; Chen W; Zhang W; Zhang H; Yu H; Yi Y
    Food Res Int; 2023 Jan; 163():112275. PubMed ID: 36596185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of metabolism substances in Cordyceps sinensis and Cordyceps militaris cultivated with tussah pupa based on LC-MS.
    Liu Y; Xiao K; Wang Z; Wang S; Xu F
    J Food Biochem; 2021 Jun; 45(6):e13735. PubMed ID: 33890309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleosides and amino acids, isolated from
    Zhang Y; Liu J; Wang Y; Sun C; Li W; Qiu J; Qiao Y; Wu F; Huo X; An Y; Zhang B; Ma S; Zheng J; Ma X
    Nat Prod Res; 2022 Dec; 36(23):6056-6059. PubMed ID: 35188001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a mass spectrometry-based metabolomics workflow for traceability of wild and cultivated
    Ding B; Li H; Huang H; Xie J; Wang Z; Chen W; Tao Y
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2022 Nov; 39(11):1773-1784. PubMed ID: 36070448
    [No Abstract]   [Full Text] [Related]  

  • 7. Altered proteomic polymorphisms in the caterpillar body and stroma of natural Cordyceps sinensis during maturation.
    Dong YZ; Zhang LJ; Wu ZM; Gao L; Yao YS; Tan NZ; Wu JY; Ni L; Zhu JS
    PLoS One; 2014; 9(10):e109083. PubMed ID: 25310818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological Observations and Fatty Acid Composition of Indoor-Cultivated Cordyceps sinensis at a High-Altitude Laboratory on Sejila Mountain, Tibet.
    Guo LX; Xu XM; Liang FR; Yuan JP; Peng J; Wu CF; Wang JH
    PLoS One; 2015; 10(5):e0126095. PubMed ID: 25938484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparative study on specific chromatograms and main nucleosides of cultivated and wild Cordyceps sinensis].
    Zan K; Huang LL; Guo LN; Liu J; Zheng J; Ma SC; Qian ZM; Li WJ
    Zhongguo Zhong Yao Za Zhi; 2017 Oct; 42(20):3957-3962. PubMed ID: 29243433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial Cultivation of the Chinese Cordyceps From Injected Ghost Moth Larvae.
    Liu G; Han R; Cao L
    Environ Entomol; 2019 Sep; 48(5):1088-1094. PubMed ID: 31517384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Throughput Identification of the Potential Antioxidant Peptides in
    Tong X; Guo J
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056752
    [No Abstract]   [Full Text] [Related]  

  • 12. Metabolite profiling and antioxidant capacity of natural Ophiocordyceps gracilis and its cultures using LC-MS/MS-based metabolomics: Comparison with Ophiocordyceps sinensis.
    Wang Y; Tong L; Yang L; Ren B; Guo D
    Phytochem Anal; 2024 Mar; 35(2):308-320. PubMed ID: 37779226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin traceability of Cordyceps sinensis based on trace elements and stable isotope fingerprints.
    Wang W; Bi Y; Ye J; Chen C; Bi X
    Sci Total Environ; 2024 Feb; 912():169591. PubMed ID: 38154647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of the composition of cultivated, naturally grown Cordyceps sinensis, and stiff worms across different sampling years.
    Zhou Y; Wang M; Zhang H; Huang Z; Ma J
    PLoS One; 2019; 14(12):e0225750. PubMed ID: 31800596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A breakthrough in the artificial cultivation of Chinese cordyceps on a large-scale and its impact on science, the economy, and industry.
    Li X; Liu Q; Li W; Li Q; Qian Z; Liu X; Dong C
    Crit Rev Biotechnol; 2019 Mar; 39(2):181-191. PubMed ID: 30394122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning, expression, and characterization of two novel cuticle-degrading serine proteases from the entomopathogenic fungus Cordyceps sinensis.
    Zhang Y; Liu X; Wang M
    Res Microbiol; 2008; 159(6):462-9. PubMed ID: 18555668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomic comparison between wild Ophiocordyceps sinensis and artificial cultured Cordyceps militaris.
    Chen L; Liu Y; Guo Q; Zheng Q; Zhang W
    Biomed Chromatogr; 2018 May; ():e4279. PubMed ID: 29752731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Metabolite Landscape Distinguishes Medicinal Fungus
    Tang C; Li X; Wang T; Wang J; Xiao M; He M; Chang X; Fan Y; Li Y
    Molecules; 2023 Nov; 28(23):. PubMed ID: 38067475
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparative metabolic profiling of wild
    Guo S; Lin M; Xie D; Zhang W; Zhang M; Zhou L; Li S; Hu H
    Front Pharmacol; 2022; 13():1036589. PubMed ID: 36506548
    [No Abstract]   [Full Text] [Related]  

  • 20. Metabolic characterization of natural and cultured Ophicordyceps sinensis from different origins by 1H NMR spectroscopy.
    Zhang J; Zhong X; Li S; Zhang G; Liu X
    J Pharm Biomed Anal; 2015 Nov; 115():395-401. PubMed ID: 26279370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.