These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29609151)

  • 21. Reclamation of iron and copper from BCL slag in Botswana.
    Gabasiane TS; Danha G; Mashifana T; Mamvura T
    Heliyon; 2024 Feb; 10(4):e26614. PubMed ID: 38434057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of Chalcopyrite Leaching Using an Ore-on-a-Chip.
    Yang D; Kirke M; Fan R; Priest C
    Anal Chem; 2019 Jan; 91(2):1557-1562. PubMed ID: 30525486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Treatment of smelting residue for arsenic removal and recovery of copper using pyro-hydrometallurgical process.
    Shibayama A; Takasaki Y; William T; Yamatodani A; Higuchi Y; Sunagawa S; Ono E
    J Hazard Mater; 2010 Sep; 181(1-3):1016-23. PubMed ID: 20619796
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beneficiation of borax by reverse flotation in boron saturated brine.
    Cafer Cilek E; Uresin H
    J Colloid Interface Sci; 2005 Oct; 290(2):426-30. PubMed ID: 15939429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leaching characteristics of copper flotation waste before and after vitrification.
    Coruh S; Ergun ON
    J Environ Manage; 2006 Dec; 81(4):333-8. PubMed ID: 16730115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective leaching of copper and zinc from primary ores and secondary mineral residues using biogenic ammonia.
    Williamson AJ; Verbruggen F; Chavez Rico VS; Bergmans J; Spooren J; Yurramendi L; Laing GD; Boon N; Hennebel T
    J Hazard Mater; 2021 Feb; 403():123842. PubMed ID: 33264923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of the leaching potential of flotation tailings from rare earth mineral extraction in cold climates.
    Costis S; Coudert L; Mueller KK; Cecchi E; Neculita CM; Blais JF
    Sci Total Environ; 2020 Aug; 732():139225. PubMed ID: 32438152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomining with bacteriophage: selectivity of displayed peptides for naturally occurring sphalerite and chalcopyrite.
    Curtis SB; Hewitt J; Macgillivray RT; Dunbar WS
    Biotechnol Bioeng; 2009 Feb; 102(2):644-50. PubMed ID: 18767194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the Use of Styrene-Based Nanoparticles to Mitigate the Effect of Montmorillonite in Copper Sulfide Recovery by Flotation.
    Estrada D; Murga R; Rubilar O; Amalraj J; Gutierrez L; Uribe L
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leaching of Copper Concentrate with Iodized Salts in a Saline Acid Medium: Part 1-Effect of Concentrations.
    Castellón CI; Taboada ME
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing the flotation recovery of copper minerals in smelter slags from Namibia prior to disposal.
    Sibanda V; Sipunga E; Danha G; Mamvura TA
    Heliyon; 2020 Jan; 6(1):e03135. PubMed ID: 31909286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Environmental remediation of sulfidic tailings with froth flotation: Reducing the consumption of additional resources by optimization of conditioning parameters and water recycling.
    Nuorivaara T; Björkqvist A; Bacher J; Serna-Guerrero R
    J Environ Manage; 2019 Apr; 236():125-133. PubMed ID: 30721830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iron Oxide-Copper Mineral Associations in Supergene Zones: Insights into Flotation Challenges and Optimization Using Response Surface Methodology.
    Oumesaoud H; Faouzi R; Aboulhassan MA; Naji K; Benzakour I; Faqir H; Oukhrib R; Elboughdiri N
    ACS Omega; 2024 Jun; 9(23):24438-24452. PubMed ID: 38882131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioleaching of copper sulfide minerals assisted by microbial fuel cells.
    Huang T; Wei X; Zhang S
    Bioresour Technol; 2019 Sep; 288():121561. PubMed ID: 31152952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation.
    Zhang Y; Li H; Yu X
    J Hazard Mater; 2012 Apr; 213-214():167-74. PubMed ID: 22333161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chalcopyrite concentrate leaching with biologically produced ferric sulphate.
    Kinnunen PH; Heimala S; Riekkola-Vanhanen ML; Puhakka JA
    Bioresour Technol; 2006 Sep; 97(14):1727-34. PubMed ID: 16154742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leaching of iron from copper tailings by sulfuric acid: behavior, kinetics and mechanism.
    Tao L; Wang L; Yang K; Wang X; Chen L; Ning P
    RSC Adv; 2021 Jan; 11(10):5741-5752. PubMed ID: 35423117
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thiol-Silylated Cellulose Nanocrystals as Selective Biodepressants in Froth Flotation.
    Ludovici F; Hartmann R; Rudolph M; Liimatainen H
    ACS Sustain Chem Eng; 2023 Nov; 11(45):16176-16184. PubMed ID: 38022739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a Two-Stage Hydrometallurgical Process for Gold-Antimony Concentrate Treatment from the Olimpiadinskoe Deposit.
    Rusalev R; Rogozhnikov D; Dizer O; Golovkin D; Karimov K
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recovery of niobium and tantalum by solvent extraction from Sn-Ta-Nb mining tailings.
    Rodríguez O; Alguacil FJ; Baquero EE; García-Díaz I; Fernández P; Sotillo B; López FA
    RSC Adv; 2020 Jun; 10(36):21406-21412. PubMed ID: 35518734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.