These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 29609297)

  • 1. Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection.
    Sun G; Qin L; Hou Z; Jing X; He F; Tan F; Zhang S
    Opt Express; 2018 Mar; 26(6):7423-7436. PubMed ID: 29609297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system.
    Mei L; Brydegaard M
    Opt Express; 2015 Nov; 23(24):A1613-28. PubMed ID: 26698808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique.
    Mei L; Guan P; Yang Y; Kong Z
    Opt Express; 2017 Aug; 25(16):A628-A638. PubMed ID: 29041035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies.
    Mei L; Kong Z; Guan P
    Opt Express; 2018 Mar; 26(6):A260-A274. PubMed ID: 29609357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison studies of the Scheimpflug lidar technique and the pulsed lidar technique for atmospheric aerosol sensing.
    Mei L; Ma T; Kong Z; Gong Z; Li H
    Appl Opt; 2019 Nov; 58(32):8981-8992. PubMed ID: 31873680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atmospheric Pollution Monitoring in Urban Area by Employing a 450-nm Lidar System.
    Kong Z; Liu Z; Zhang L; Guan P; Li L; Mei L
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29890649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tropospheric aerosol extinction coefficient profiles derived from scanning lidar measurements over Tsukuba, Japan, from 1990 to 1993.
    Sasano Y
    Appl Opt; 1996 Aug; 35(24):4941-52. PubMed ID: 21102920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-wavelength polarization Scheimpflug lidar system developed for remote sensing of atmospheric aerosols.
    Kong Z; Ma T; Chen K; Gong Z; Mei L
    Appl Opt; 2019 Nov; 58(31):8612-8621. PubMed ID: 31873345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of auxiliary atmospheric state parameters on the aerosol optical properties retrieval errors of high-spectral-resolution lidar.
    Zhang Y; Liu D; Zheng Z; Liu Z; Hu D; Qi B; Liu C; Bi L; Zhang K; Wen C; Jiang L; Liu Y; Ke J; Zang Z
    Appl Opt; 2018 Apr; 57(10):2627-2637. PubMed ID: 29714250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-frequency lidar inversion technique.
    Potter JF
    Appl Opt; 1987 Apr; 26(7):1250-6. PubMed ID: 20454312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data.
    Chemyakin E; Müller D; Burton S; Kolgotin A; Hostetler C; Ferrare R
    Appl Opt; 2014 Nov; 53(31):7252-66. PubMed ID: 25402885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mini-Scheimpflug lidar system for all-day atmospheric remote sensing in the boundary layer.
    Mei L; Li Y; Kong Z; Ma T; Zhang Z; Fei R; Cheng Y; Gong Z; Liu K
    Appl Opt; 2020 Aug; 59(22):6729-6736. PubMed ID: 32749378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-wavelength lidar inversion algorithm for a two-component atmosphere.
    Ackermann J
    Appl Opt; 1997 Jul; 36(21):5134-43. PubMed ID: 18259326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retrieval and analysis of a polarized high-spectral-resolution lidar for profiling aerosol optical properties.
    Liu D; Yang Y; Cheng Z; Huang H; Zhang B; Ling T; Shen Y
    Opt Express; 2013 Jun; 21(11):13084-93. PubMed ID: 23736562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inversion of lidar signals with the slope method.
    Kunz GJ; de Leeuw G
    Appl Opt; 1993 Jun; 32(18):3249-56. PubMed ID: 20829941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A new retrieval method for ozone concentration at the troposphere based on differential absorption lidar].
    Fan GQ; Liu JG; Liu WQ; Lu YH; Zhang TS; Dong YS; Zhao XS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Dec; 32(12):3304-8. PubMed ID: 23427557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lidar AOD inversion and aerosol extinction profile correction method based on GA-BP neural network.
    Liu W; Zhao X; Wu XY; Ding XY; Chen S
    Opt Express; 2024 Apr; 32(9):16052-16064. PubMed ID: 38859242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Dual-wavelength Mie lidar observations of tropospheric aerosols].
    Chi RL; Wu DC; Liu B; Zhou J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1468-72. PubMed ID: 19810510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting aerosol backscattering coefficient across the whole troposphere by the sidescattering lidar system with three CCD cameras.
    Ma X; Wang Z; Zhang H; Shan H; Han J; Zhao S; Wang S; Liu D; Wang Y; Tao Z
    Opt Express; 2022 Aug; 30(17):29969-29978. PubMed ID: 36242109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twin scanning lidars for accurate measurement of lower tropospheric aerosols by numerical approximation.
    Gao F; Nan H; Li W; Zhu Q; Zhang R; Yan Q; Li S; Wang L; Hua D
    Appl Opt; 2018 Apr; 57(12):3065-3071. PubMed ID: 29714338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.