These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29609303)

  • 1. Large-area broadband optical absorber fabricated by shadowing sphere lithography.
    Wang HF; Shi JX; Qian LY; Yan CC; Han CQ; Zhao YP
    Opt Express; 2018 Mar; 26(6):7507-7515. PubMed ID: 29609303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband wide-angle multilayer absorber based on a broadband omnidirectional optical Tamm state.
    Wu F; Wu X; Xiao S; Liu G; Li H
    Opt Express; 2021 Jul; 29(15):23976-23987. PubMed ID: 34614651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-broadband Tunable Resonant Light Trapping in a Two-dimensional Randomly Microstructured Plasmonic-photonic Absorber.
    Liu Z; Liu L; Lu H; Zhan P; Du W; Wan M; Wang Z
    Sci Rep; 2017 Mar; 7():43803. PubMed ID: 28256599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ag-Cu mixed phase plasmonic nanostructures fabricated by shadow nanosphere lithography and glancing angle co-deposition.
    Ingram W; Larson S; Carlson D; Zhao Y
    Nanotechnology; 2017 Jan; 28(1):015301. PubMed ID: 27897147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber.
    Jen YJ; Huang YJ; Liu WC; Lin YW
    Sci Rep; 2017 Jan; 7():39791. PubMed ID: 28045135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-area mid-infrared broadband absorbers based on spiral ITO resulting from the combination of two different broadening absorption methods.
    Cao BW; Li C; Shi WJ; Han CQ; Wu Y; Yan CC
    Opt Express; 2021 Oct; 29(21):34427-34440. PubMed ID: 34809233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-Metal Broadband Optical Absorbers Based on Block Copolymer Nanolithography.
    Hulkkonen H; Sah A; Niemi T
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42941-42947. PubMed ID: 30421602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-5 µm mid-infrared broadband absorbers composed of layered ITO nanorod arrays with high visible light transmittance.
    Li L; Cui Q; Zhang YJ; Li C; Gu TC; Wu Y; Han CQ; Yan CC
    Opt Express; 2022 Jun; 30(13):23840-23851. PubMed ID: 36225057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid-response low infrared emission broadband ultrathin plasmonic light absorber.
    Tagliabue G; Eghlidi H; Poulikakos D
    Sci Rep; 2014 Nov; 4():7181. PubMed ID: 25418040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wide-angle and broadband solar absorber made using highly efficient large-area fabrication strategy.
    Hou W; Yang F; Chen Z; Dong J; Jiang S
    Opt Express; 2022 Jan; 30(3):4424-4433. PubMed ID: 35209680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization-independent and high-efficiency broadband optical absorber in visible light based on nanostructured germanium arrays.
    Zhao J; Yu X; Yang X; Th Tee CA; Yuan W; Yu Y
    Opt Lett; 2019 Feb; 44(4):963-966. PubMed ID: 30768031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-Broadband, Lithography-Free, and Large-Scale Compatible Perfect Absorbers: The Optimum Choice of Metal layers in Metal-Insulator Multilayer Stacks.
    Abedini Dereshgi S; Ghobadi A; Hajian H; Butun B; Ozbay E
    Sci Rep; 2017 Nov; 7(1):14872. PubMed ID: 29093519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable Fabrication of Quasi-Three-Dimensional Chiral Plasmonic Oligomers Based on Stepwise Colloid Sphere Lithography Technology.
    Xie S; Yang J; Xiao X; Hou Y; Du J; Pang L; Li X; Gao F
    Nanoscale Res Lett; 2015 Dec; 10(1):393. PubMed ID: 26450617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials.
    Liu B; Tang C; Chen J; Xie N; Tang H; Zhu X; Park GS
    Nanoscale Res Lett; 2018 May; 13(1):153. PubMed ID: 29767294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Fabrication of Titanium Nitride Nanoring Broad-Band Absorbers in the Visible to Near-Infrared by Shadow Sphere Lithography.
    Go M; Lee D; Kim S; Jang J; Kim KW; Lee J; Shim S; Kim JK; Rho J
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3266-3273. PubMed ID: 36598796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.
    Butun S; Aydin K
    Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithography-free flexible perfect broadband absorber in visible light based on an all-dielectric multilayer structure.
    Zhao J; Wang Y; Zhu Y; Zhang W; Yu Y
    Opt Lett; 2020 Oct; 45(19):5464-5467. PubMed ID: 33001921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Material-Versatile Ultrabroadband Light Absorber with Self-Aggregated Multiscale Funnel Structures.
    Ryu Y; Kim C; Ahn J; Urbas AM; Park W; Kim K
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29884-29892. PubMed ID: 30107113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.