These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29609312)

  • 1. Controllable optical rogue waves via nonlinearity management.
    Yang Z; Zhong WP; Belić M; Zhang Y
    Opt Express; 2018 Mar; 26(6):7587-7597. PubMed ID: 29609312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonparaxial rogue waves in optical Kerr media.
    Temgoua DD; Kofane TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063201. PubMed ID: 26172812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of optical activity on rogue waves propagating in chiral optical fibers.
    Temgoua DD; Kofane TC
    Phys Rev E; 2016 Jun; 93(6):062223. PubMed ID: 27415269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable parabolic-cylinder optical rogue wave.
    Zhong WP; Chen L; Belić M; Petrović N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043201. PubMed ID: 25375612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable optical rogue waves in the femtosecond regime.
    Dai CQ; Zhou GQ; Zhang JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016603. PubMed ID: 22400691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rogue-pair and dark-bright-rogue waves of the coupled nonlinear Schrödinger equations from inhomogeneous femtosecond optical fibers.
    Yomba E; Zakeri GA
    Chaos; 2016 Aug; 26(8):083115. PubMed ID: 27586611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers.
    Wang L; Zhu YJ; Qi FH; Li M; Guo R
    Chaos; 2015 Jun; 25(6):063111. PubMed ID: 26117105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical rogue waves for the inhomogeneous generalized nonlinear Schrödinger equation.
    Loomba S; Kaur H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062903. PubMed ID: 24483527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional rogue waves in nonstationary parabolic potentials.
    Yan Z; Konotop VV; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036610. PubMed ID: 21230206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling rogue waves in inhomogeneous Bose-Einstein condensates.
    Loomba S; Kaur H; Gupta R; Kumar CN; Raju TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052915. PubMed ID: 25353869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super chirped rogue waves in optical fibers.
    Chen S; Zhou Y; Bu L; Baronio F; Soto-Crespo JM; Mihalache D
    Opt Express; 2019 Apr; 27(8):11370-11384. PubMed ID: 31052982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-driven rogue waves solutions for the focusing and variable coefficient nonlinear Schrödinger equations via deep learning.
    Sun J; Dong H; Liu M; Fang Y
    Chaos; 2024 Jul; 34(7):. PubMed ID: 39028903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.
    He J; Wang L; Li L; Porsezian K; Erdélyi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062917. PubMed ID: 25019861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibers.
    Sun WR; Liu DY; Xie XY
    Chaos; 2017 Apr; 27(4):043114. PubMed ID: 28456173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rogue waves in the two dimensional nonlocal nonlinear Schrödinger equation and nonlocal Klein-Gordon equation.
    Liu W; Zhang J; Li X
    PLoS One; 2018; 13(2):e0192281. PubMed ID: 29432495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions.
    Yang B; Chen Y
    Chaos; 2018 May; 28(5):053104. PubMed ID: 29857682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background.
    Zhang HQ; Chen F
    Chaos; 2021 Feb; 31(2):023129. PubMed ID: 33653045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rogue waves in nonlocal media.
    Horikis TP; Ablowitz MJ
    Phys Rev E; 2017 Apr; 95(4-1):042211. PubMed ID: 28505851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering rogue waves with quintic nonlinearity and nonlinear dispersion effects in a modified Nogochi nonlinear electric transmission network.
    Kengne E; Liu W
    Phys Rev E; 2020 Jul; 102(1-1):012203. PubMed ID: 32795018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rogue wave solutions to the generalized nonlinear Schrödinger equation with variable coefficients.
    Zhong WP; Belić MR; Huang T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):065201. PubMed ID: 23848816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.