These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29609318)

  • 1. Inverse scattering with a non self-adjoint variational formulation.
    Marks DL; Smith DR
    Opt Express; 2018 Mar; 26(6):7655-7671. PubMed ID: 29609318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating the scanning of a focused beam through scattering media using a numerical solution of Maxwell's equations.
    Elmaklizi A; Schäfer J; Kienle A
    J Biomed Opt; 2014 Jul; 19(7):071404. PubMed ID: 24395650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-element solution of Maxwell's equations with Helmholtz forms.
    Paulsen KD
    J Opt Soc Am A Opt Image Sci Vis; 1994 Apr; 11(4):1434-44. PubMed ID: 8189287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate adjoint design sensitivities for nano metal optics.
    Hansen P; Hesselink L
    Opt Express; 2015 Sep; 23(18):23899-923. PubMed ID: 26368483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exact solution of Maxwell's equations for optical interactions with a macroscopic random medium.
    Tseng SH; Greene JH; Taflove A; Maitland D; Backman V; Walsh JT
    Opt Lett; 2004 Jun; 29(12):1393-5. PubMed ID: 15233446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of optical waveguide structures by use of a combined finite-difference/finite-difference time-domain method.
    Wallace JW; Jensen MA
    J Opt Soc Am A Opt Image Sci Vis; 2002 Mar; 19(3):610-9. PubMed ID: 11876328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The inverse scattering problem for orthotropic media in polarization-sensitive optical coherence tomography.
    Elbau P; Mindrinos L; Scherzer O
    GEM; 2018; 9(1):145-165. PubMed ID: 29606983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-PSTD simulation and polarization analysis of a light pulse transmitted through a scattering medium.
    Devaux F; Lantz E
    Opt Express; 2013 Oct; 21(21):24969-84. PubMed ID: 24150340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the immersed interface method for solving time-domain Maxwell's equations in materials with curved dielectric interfaces.
    Deng S
    Comput Phys Commun; 2008 Dec; 179(11):791-800. PubMed ID: 20559461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling electromagnetic scattering with wire metamaterial resonators.
    Filonov DS; Shalin AS; Iorsh I; Belov PA; Ginzburg P
    J Opt Soc Am A Opt Image Sci Vis; 2016 Oct; 33(10):1910-1916. PubMed ID: 27828093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled mode theory in non-Hermitian optical cavities.
    Wu B; Wu B; Xu J; Xiao J; Chen Y
    Opt Express; 2016 Jul; 24(15):16566-73. PubMed ID: 27464111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined finite-element and scalar diffraction simulation of light scattering on zone edges of diffractive intraocular lenses.
    Nemes-Czopf A; Erdei G
    Appl Opt; 2023 Aug; 62(24):6491-6498. PubMed ID: 37706843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-accelerating self-trapped nonlinear beams of Maxwell's equations.
    Kaminer I; Nemirovsky J; Segev M
    Opt Express; 2012 Aug; 20(17):18827-35. PubMed ID: 23038522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudo-spectral Analysis of Radially-Diagonalized Maxwell's Equations in Cylindrical Co-ordinates.
    Varis K; Baghai-Wadji A
    Opt Express; 2003 Nov; 11(23):3048-62. PubMed ID: 19471426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On Maxwell's equations in non-stationary media.
    Vorgul I
    Philos Trans A Math Phys Eng Sci; 2008 May; 366(1871):1781-8. PubMed ID: 18218602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservative finite-difference scheme for the problem of THz pulse interaction with multilevel layer covered by disordered structure based on the density matrix formalism and 1D Maxwell's equation.
    Trofimov VA; Varentsova SA; Zakharova IG; Zagursky DY
    PLoS One; 2018; 13(8):e0201572. PubMed ID: 30070996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of enhanced backscattering of light by numerically solving Maxwell's equations without heuristic approximations.
    Tseng S; Kim Y; Taflove A; Maitland D; Backman V; Walsh J
    Opt Express; 2005 May; 13(10):3666-72. PubMed ID: 19495273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exact and approximate solutions of Maxwell's equations for a confocal cavity.
    Varga P; Török P
    Opt Lett; 1996 Oct; 21(19):1523-5. PubMed ID: 19881712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solving Maxwell's Equations Using Polarimetry Alone.
    Olmos-Trigo J
    Nano Lett; 2024 Jul; 24(28):8658-8663. PubMed ID: 38949763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic band gap analysis using finite-difference frequency-domain method.
    Guo S; Wu F; Albin S; Rogowski R
    Opt Express; 2004 Apr; 12(8):1741-6. PubMed ID: 19475000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.